• Title/Summary/Keyword: Curvature-Based Element

Search Result 135, Processing Time 0.025 seconds

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

Vibration Analyses of Cylindrical Hybrid Panel with Viscoelastic Layer Based on Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1361-1369
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the nitration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model Is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

Series solutions for spatially coupled buckling anlaysis of thin-walled Timoshenko curved beam on elastic foundation

  • Kim, Nam-Il
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.447-484
    • /
    • 2009
  • The spatially coupled buckling, in-plane, and lateral bucking analyses of thin-walled Timoshenko curved beam with non-symmetric, double-, and mono-symmetric cross-sections resting on elastic foundation are performed based on series solutions. The stiffness matrices are derived rigorously using the homogeneous form of the simultaneous ordinary differential equations. The present beam formulation includes the mechanical characteristics such as the non-symmetric cross-section, the thickness-curvature effect, the shear effects due to bending and restrained warping, the second-order terms of semitangential rotation, the Wagner effect, and the foundation effects. The equilibrium equations and force-deformation relationships are derived from the energy principle and expressions for displacement parameters are derived based on power series expansions of displacement components. Finally the element stiffness matrix is determined using force-deformation relationships. In order to verify the accuracy and validity of this study, the numerical solutions by the proposed method are presented and compared with the finite element solutions using the classical isoparametric curved beam elements and other researchers' analytical solutions.

Vibration Analyses of Cylindrical Hybrid Panel With Viscoelastic Layer Based On Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheong, Tai-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.772-778
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the vibration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

  • PDF

A Study on the Structural Analysis of Curved Portions of Pipe Loops Used in Ships (선박용 파이프 루프 곡선부의 구조해석에 관한 연구)

  • Park, Chi-Mo;Bae, Byoung-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.88-93
    • /
    • 2010
  • Many pipes that are arranged longitudinally in ships have loops at intervals to prevent the failure of the pipes as they absorb large portions of the axial load caused by the bending of the hull girder and/or thermal loads when the pipes are carrying very hot fluids. Since the loops are curved at corners, an efficient method for conducting the structural analyses of these curved portions is required. In this paper, a pipe loop was analyzed by an analytical method and by the finite-element method in four different ways, i.e., based on straight-beam elements, curved-beam elements, 2-D shell elements, and 3-D solid elements. The results of the five analyses were compared to check the validity of the current curved-beam theory. The paper includes some suggestions on how to analyze the pipe loops efficiently.

A finite element analysis for unbonded flexible risers under bending loads

  • Xiqia, Chen;Shixiao, Fu;Yun, Gao;Xiaying, Du
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.77-89
    • /
    • 2015
  • As the exploitation of oil and gas resources advances into deeper waters and harsher environments, the design and analysis of the flexible risers has become the research focus in the offshore engineering filed. Due to the complexity of the components and the sliding between the adjacent layers, the bending response of the flexible risers is highly non-linear. This paper presents the finite element analysis of the flexible risers under bending loads. The detailed finite element model of the flexible riser is established in ABAQUS software. This finite element model incorporates all the fine details of the riser to accurately predict its nonlinear structural behavior. Based on the finite element model, the bending moment-curvature relationships of a flexible riser under various axisymmetric loads have been investigated. The results have been compared with the analytical ones obtained from the literature and good agreements have been found. Moreover, the stress of the tendon armors has been studied. The non-linear relationship between the armor tendons' stress and the bending loads has been obtained.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

The Development of Displacement Analysis System in High Strength Concrete Members (고강도콘크리트 구조부재의 변위해석시스템 개발연구)

  • 장일영
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • The object of this study is to propose a rational method of resistance strength and flexural deformation for structures using high strength concrete(400-700kgf/cm/sup 2/). The material property(stress-strain relationship) is to be modelize using regression analysis of experimental result. And the applicability of trapezoidal stress model is to be verified. An analytical method is used by the moment-curvature relationship which is based on stress-strain relationships of material for discreted element of section. The evaluation method of moment-curvature of high strength concrete structures is also proposed by using the Monte Carlo Simulation based on a probabilistic concept that could minimize an error due to iterated calculations and random variable of material properties.

  • PDF

Divergence-free algorithms for moment-thrust-curvature analysis of arbitrary sections

  • Chen, Liang;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.557-569
    • /
    • 2017
  • Moment-thrust-curvatures ($M-P-{\Phi}$ curves) are fundamental quantities for detailed descriptions of basic properties such as stiffness and strength of a section under axial loads required for accurate computation of the deformations of reinforced concrete or composite columns. Currently, the finite-element-based methods adopting small fibers for analyzing a section are commonly used for generating the $M-P-{\Phi}$ curves and they require large amounts of computational time and effort. Further, the conventional numerical procedure using the force-control method might encounter divergence problems under high compression or tension. Therefore, this paper proposes a divergence-free approach, combining the use of the displacement-control and the Quasi-Newton scheme in the incremental-iterative procedure, for generating the $M-P-{\Phi}$ curves of arbitrary sections. An efficient method for computing the strength from concrete components is employed, where the stress integration is executed by layer-based algorithms. For easy modeling of residual stress, cross sections of structural steel components are meshed into fibers for strength resultants. The numerical procedure is elaborated in detail with flowcharts. Finally, extensive validating examples from previously published research are given for verifying the accuracy of the proposed method.