• Title/Summary/Keyword: Curvature Shape

Search Result 524, Processing Time 0.029 seconds

Image Information Retrieval Using DTW(Dynamic Time Warping) (DTW(Dynamic Time Warping)를 이용한 영상 정보 검색)

  • Ha, Jeong-Yo;Lee, Na-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.423-431
    • /
    • 2009
  • There are various image retrieval methods using shape, color and texture features. One of the most active area is using shape and color information. A number of shape representations have been suggested to recognize shapes even under affine transformation. There are many kinds of method for shape recognition, the well-known method is Fourier descriptors and moment invariant. The other method is CSS(Curvature Scale Space). The maxima of curvature scale space image have already been used to represent 2-D shapes in different applications. Because preexistence CSS exists several problems, in this paper we use improved CSS method for retrieval image. There are two kinds of method, One is using RGB color information feature and the other is using HSI color information feature. In this paper we used HSI color model to represent color histogram before, then use it as comparison measure. The similarity is measured by using Euclidean distance and for reduce search time and accuracy, We use DTW for measure similarity. Compare with the result of using Euclidean distance, we can find efficiency elevated.

  • PDF

A Study on the Optimal Frame Design of Armscye Circumference (겨드랑둘레선의 최적 프레임 생성에 관한 연구)

  • Park, Sun-Mi;Choi, Kueng-Mi;Nam, Yun-Ja;Ryu, Young-Sil;Jun, Jung-Ill
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.788-798
    • /
    • 2009
  • This study aims to develop a highly reproducible, optimal frame design algorithm using variations in the curvature of armscye circumference, which will provide the basics for remodeling the 3D human body shape with the concept of reverse design used to develop total contents for the apparel industry. 1. The results of the experiment proved that ratio value was significantly efficient than absolute value of curvature variation to extract feature points in the armscye circumference 2. For the shoulder(1st and 2nd quadrant) and front armhole(3rd quadrant) parts of the armscye circumference, frame remodeling with the positive point of inflection led to the completion of a highly reproducible frame. 3. Similarly, even for the rear armhole part(4th quadrant) in the armscye circumference, it was found that frame remodeling using the positive maximum point of inflection resulted in highly reproducible body shape with the maximum point of inflection situated within the range of split angles $305^{\circ}{\sim}330^{\circ}$, while frame remodeling using simultaneously the two largest points of inflection including maximum point of inflection led to highly reproducible body shape with the maximum point of inflection out of the range $305^{\circ}{\sim}330^{\circ}$. 4. Based upon the optimal frame design algorithm developed in this study, section-specific feature points in the armscye circumference were extracted depending on the rate of curvature variation and remodeling with spline curves was conducted. The results indicate a remarkably high reproducibility(98.6%) and suggest that the algorithm developed in this study is suitable for human body modeling.

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

The Extraction Vertex on 3-D Object using 3-D Curvature (3차원 곡률을 이용한 3차원물체의 정점 추출)

  • Yun, Hyeong-Tae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1616-1623
    • /
    • 1996
  • In general, in order to recognize and modelling the 3-D object, it is necessary to have the method to express the shape of 3-D object. In case of 2-D like silhouette image, the extraction of vertex on the boundary of the object can be obtained by using the 2-D curvature function. But, in case of 3-D curvature function that can calculate the surface curvature values of 3-d object doesn't exist, it is difficult to express the share of 3-D object. Therefore, in this paper, a new method is presented. With this presented method, the approximated surface curvature values and vertex of 3-D object can be obtained effectively using the principle of 2-D curvature and the least square method.

  • PDF

A Study on Curvature Determination Approach of Disk Cams Using relative Accelerations of Followers (종동절의 상대가속도를 이용한 원반 캠의 곡률반경 결정법에 관한 연구)

  • Shin, Joong-Ho;Kang, Dong-Woo;Kim, Jong-Soo;Kim, Dae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.113-119
    • /
    • 2000
  • There are two major factors which affect the cam design : the pressure angle and the radius of curvature, Cam shape will have an instantaneous radius of curvature at every point. Even though the design constraint of the pressure angle has been satisfied the follower may still not complete the desired contact motion. If the radius of the follower roller is larger than the concave(negative) radius on the cam it occurs the gap between the cam and the follower roller at the contact point. And also if the curvature of the pitch curve of the cam is too sharp the cam profile may be undercut. This paper proposes a new approach which uses the relative velocity of the follower roller parallel to the tangent line at the contact point on the cam surface for determining the pressure angle and the relative acceeration for determining the radius of curvature.

  • PDF

Exploration of Curvature of Three Dimensional Convex Object by Active Touch of Robot Hand (로봇손의 능동접촉에 의한 3차원 볼록한 물체의 곡률탐사)

  • Choi, Hyouk-Ryeol;Kim, Jin-Ho;Oh, Sang-Rok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.130-137
    • /
    • 1999
  • In this paper we propose a method of determining the local curvature of a three dimensional convex object using the force and torque information obtained from the active touch of a robot hand. A technique for estimating two dimensional curvature of a convex object are introduced and the way of computing the three dimensional curvature from the two dimensional vurvatures is presented. Also, we develop an experimental system consisting of a finger and verify the effectiveness of the proposed method experimentally.

  • PDF

Vertex Selection method using curvature information (곡률 정보를 이용한 정점 선택 기법)

  • 윤병주;이시웅;강현수;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.505-508
    • /
    • 2003
  • The current paper proposes a new vertex selection scheme for polygon-based contour ceding. To efficiently characterize the shape of an object, we incorporate the curvature information in addition to the conventional maximum distance criterion in vertex selection process. The proposed method consists of “two-step procedure.” At first, contour pixels of high curvature value are selected as key vertices based on the curvature scale space (CSS), thereby dividing an overall contour into several contour-segments. Each segment is considered as an open contour whose end points are two consecutive key vertices and is processed independently. In the second step, vertices for each contour segment are selected using progressive vertex selection (PVS) method in order to obtain minimum number of vertices under the given maximum distance criterion ( $D_{MAX}$). Experimental results are presented to compare the approximation performances of the proposed and conventional methods.s.

  • PDF

Strength and deflection prediction of double-curvature reinforced concrete squat walls

  • Bali, Ika;Hwang, Shyh-Jiann
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.501-521
    • /
    • 2007
  • This study presents a model to better understand the shear behavior of reinforced concrete walls subjected to lateral load. The scope of the study is limited to squat walls with height to length ratios not exceeding two, deformed in a double-curvature shape. This study is based on limited knowledge of the shear behavior of low-rise shear walls subjected to double-curvature bending. In this study, the wall ultimate strength is defined as the smaller of flexural and shear strengths. The flexural strength is calculated using a strength-of-material analysis, and the shear strength is predicted according to the softened strut-and-tie model. The corresponding lateral deflection of the walls is estimated by superposition of its flexibility sources of bending, shear and slip. The calculated results of the proposed procedure correlate reasonably well with previously reported experimental results.

Multimodal Curvature Discrimination of 3D Objects

  • Kim, Kwang-Taek;Lee, Hyuk-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.212-216
    • /
    • 2013
  • As virtual reality technologies are advanced rapidly, how to render 3D objects across modalities is becoming an important issue. This study is therefore aimed to investigate human discriminability on the curvature of 3D polygonal surfaces with focusing on the vision and touch senses because they are most dominant when explore 3D shapes. For the study, we designed a psychophysical experiment using signal detection theory to determine curvature discrimination for three conditions: haptic only, visual only, and both haptic and visual. The results show that there is no statistically significant difference among the conditions although the threshold in the haptic condition is the lowest. The results also indicate that rendering using both visual and haptic channels could degrade the performance of discrimination on a 3D global shape. These results must be considered when a multimodal rendering system is designed in near future.

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.