• 제목/요약/키워드: Curvature Effect

검색결과 650건 처리시간 0.02초

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구 (Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct)

  • 정수진;류수열;김태훈
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

사무직 여성 근로자의 경부 통증 유무와 관련된 요인 연구 (The Study on the Factors Related to the Existence of Neck Pain in Female Office Workers)

  • 남기봉;정석희;김성수
    • 한방재활의학과학회지
    • /
    • 제19권2호
    • /
    • pp.213-225
    • /
    • 2009
  • Objectives : The purpose of this study was to investigate the factors related on pain in female office workers. Methods : Neck pain group of 31 female subjects complained of neck and arm discomfort. Normal group of 20 female subjects had no complaints or minimal discomfort. Cervical curvature and muscle tone were assessed by whole spine x-ray, meridian-electromyography(MEMG), craniovertebral angle, and Moire. Neck pain was evaluated by Neck Disability Index(NDI) and Visual Analog Scale(VAS). The emotional and other physical factors that could effect neck pain were checked by questionnaires including Beck Depression Index(BDI), Stress Reaction Index(SRI), Holmes & Rahe Social Readjustment Rating Scale(SRRS), International Physical Activity Questionnaire(IPAQ), and Gastrointestinal Symptom Rating Scale(GSRS). Results : The contraction and fatigue of upper trapezius by MEMG was significantly higher in the neck pain group. And BDI, SRI, SRRS, and GSRS were significantly higher in the neck pain group (p<0.05). However, there was no significant difference in the Jackson's angle, Cobb's method, craniovertebral angle, and moire between two groups. Conclusions : The results suggest that neck pain is related to mental stress rather than physical stress and physical stress does not change cervical curvature significantly.

턱관절 장애가 동반된 경항통 환자에 대한 턱관절의 추나요법 치험 4례 보고 (The Effects of Chuna for Temporomandibular Joint in Nuchal Pain Patients with Temporomandibular Joint Disorder, Four case Reports)

  • 조동인;박동수;김순중
    • 척추신경추나의학회지
    • /
    • 제9권1호
    • /
    • pp.39-53
    • /
    • 2014
  • Objectives : The purpose of this study is to investigate the clinical application of chuna for temporomandibular joint(TMJ) in nuchal pain patients with temporomandibular joint disorder(TMD). Methods : Four patients were treated by chuna for TMJ to evaluate the effect of the treatment. The patient's symptoms were assessed by visual analogue scale(VAS), neck disability index(NDI), cervical lordotic curvature. Results : In all case, the pain was reduced according to VAS, NDI. cervical lordotic curvature of three cases were improved. Conclusions : These results suggest that chuna for TMJ might be an effective method to treat nuchal pain with TMD. But, it's necessary to have more observations and experiments.

  • PDF

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • 음익환;이정숙;육성민
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권7호
    • /
    • pp.776-779
    • /
    • 1998
  • Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.

Effect of the suction plate shape on metering performance of a vacuum metering device for garlic seeds

  • Kim, Deok-Keun;Choi, Yeong-Soo;Yang, Seung-Hwan
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.829-844
    • /
    • 2020
  • A vacuum metering device for garlic seeds was developed, and its metering performance was tested according to the design factors. Three design factors were as follows: suction surface diameter (Edge), suction surface curvature (Type), and guide height (Guide). The suction surface curvature represents the distance between the center of the grooved suction plate and the bottom of suction plate. The metering rate and multiple metering rate were analyzed as the metering performance of the developed device with two varieties of garlic seeds: Namhae (warm region-adapted garlic) and Uiseong (cold region-adapted garlic). The best metering performance for the Namhae seeds were found with the following conditions: An Edge, Guide and Type of 40, 4, and 35 mm, respectively. In the case of the Uiseong seeds, the best conditions were as follows: An Edge, Guide and Type of 35, 4, and 30 mm, respectively. The guide height was found to be the most influential design factor on the metering performance of the metering rate and multiple rate for both Namhae seeds and Uiseong seeds. Additionally, the interaction between the area of the suction surface and the curvature of the suction surface had some effects on the multiple rate for the Uiseong seeds. It was concluded that the guide height should be 4 mm or higher so that more than 90% of the metering rate could be achieved for the tested garlic seeds with the developed metering device.

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구 (Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process)

  • 성민호;차지민;문성철;유시홍;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.306-313
    • /
    • 2015
  • In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.