• 제목/요약/키워드: Curvature Correction

검색결과 91건 처리시간 0.026초

적외선 및 가시광선 결상용 3반사망원경계의 설계 (Optical design of three-mirror telescope system for infra-red and visible imaging)

  • 이종웅;홍경희;권우근
    • 한국광학회지
    • /
    • 제7권3호
    • /
    • pp.183-190
    • /
    • 1996
  • 적외선, 가시광선 겸용의 3반사망원경계를 설계하기 위하여 형상설계법 및 3차수차의 보정방법이 연구되었다. 적외선용의 광학계는 3반사경계만으로 구성되었으며 원추곡면화를 통하여 구면수차, 코마, 비점수차를 보정하였다. 가시광선용의 광학계는 적외선용의 3반사경계의 상면앞에 보정렌즈를 추가하여 상면만곡을 보정하였다. 설계된 3반사망원경계는 파장 10.mu.m에서는 시계 2.4.deg. 내에서 회절한계의 결상성능을 가지고 있다. 가싣광선대역의 단파장에 대한 rms spot size는 3.deg. 시계내에서 25.mu.m이하이며, CCD의 사용에 적합하도록 flat field 조건을 만족하고 있다.

  • PDF

Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals

  • Ci, Cheng-Gang;Yu, Hong-Bo;Wan, Su-Qin;Liu, Jing-Yao;Sun, Chia-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1187-1194
    • /
    • 2011
  • The hydrogen abstraction reaction of $CF_3CH_2CHO$ + OH has been studied theoretically by dual-level direct dynamics method. Two stable conformers, trans- and cis-$CF_3CH_2CHO$, have been located, and there are four distinct OH hydrogen-abstraction channels from t-$CF_3CH_2CHO$ and two channels from c-$CF_3CH_2CHO$. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants, which were calculated using improved canonical transitionstate theory with small-curvature tunneling correction (ICVT/SCT) were fitted by a four-parameter Arrhenius equation. It is shown that the reaction proceeds predominantly via the H-abstraction from the -CHO group over the temperature range 200-2000 K. The calculated rate constants were in good agreement with the experimental data between 263 and 358 K.

청소년기 특발성 척추측만증의 중재에 관한 연구 (A Study of Intervention for Adolescent Idiopathic Scoliosis)

  • 김승준
    • The Journal of Korean Physical Therapy
    • /
    • 제16권1호
    • /
    • pp.60-69
    • /
    • 2004
  • Many methods have been described for the early intervention of adolescent idiopathic scoliosis. Adolescent idiopathic scoliosis is lateral and rotational spinal curvature in absence of associated congenital or neurologic abnormalities, the most common type of scoliosis observed in child and young adults, and refers to curves that develop after the age of $10{\sim}18$. The curves of adolescent idiopathic scoliosis have the potential to progress rapidly during growth. Curves are currently universally measured by the Cobb's method and Ferguson method. Some curves do not remain small, these may be mildly or severely progressive and the ribs on the convex side of the curve separate, and those on the concave side ribs approximate so rib undergoes deformation with rib humping. The latter may make angles that can affect vestibular system, balance, sensory, especially cardipulmonary function. Intervention for adolescent idiopathic scoliosis is based on the patient's age, the angular value of the curve, the maturity of their skeleton, and the topography. The purpose of intervention for adolescent idiopathic scoliosis consists of knowing how to go to the best approach the correction of the lateral curve and rotational deformity holding the achieved for the remainder of spinal growth, preventing significant cosmetic abnormality, pain and cardiopulmonary complication, control the muscle imbalance and proprioceptive postural disturbances, be less need for radical surgery to avoid early surgery.

  • PDF

저속익형의 공기역학적 성능예측의 한 방법 (A method for predicting the aerodynamic performance of low-speed airfoils)

  • 유능수
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Performance Improvement of Near Earth Space Survey (NESS) Wide-Field Telescope (NESS-2) Optics

  • Yu, Sung-Yeol;Yi, Hyun-Su;Lee, Jae-Hyeob;Yim, Hong-Suh;Choi, Young-Jun;Yang, Ho-Soon;Lee, Yun-Woo;Moon, Hong-Kyu;Byun, Yong-Ik;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권2호
    • /
    • pp.153-160
    • /
    • 2010
  • We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS) located at Siding Spring Observatory (SSO) in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS) $\lambda$/10 in order to obtain a stellar full width at half maximum (FWHM) below $28\;{\mu}m$. However, we started to figure the mirror for the target value of RMS $\lambda$/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS $\lambda$/20 on the table of polishing machine, and RMS $\lambda$/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in $39.8\;{\mu}m$ of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of $27\;{\mu}m$ after re-installation of the optical system into SSO NESS Observatory in Australia.

알코올 섭취에 의한 눈의 굴절변화와 해부학적 변화와의 관계 (Relationship of Refractive and Anatomical Changes on Eyes after Alcohol Ingestion)

  • 김정욱;문병연;조현국
    • 한국안광학회지
    • /
    • 제15권2호
    • /
    • pp.195-199
    • /
    • 2010
  • 목적: 알코올 섭취 후 발생하는 일시적인 눈의 근시성 굴절변화와 동반되어 나타나는 해부학적 변화가 갖는 상호 관련성을 알아보고자 하였다. 방법: 평균 $24.5{\pm}1.5$세의 남자 8명(16 안)을 대상으로 0.42 g/kg의 알코올을 30분간에 걸쳐 섭취토록 한 다음, 알코올 섭취 1시간, 4시간, 24시간 후의 교정굴절력, 각막곡률반경과 두께, 동공직경, 안압, 그리고 안구축의 길이 변화를 측정하여 알코올 섭취 전과 비교하였다. 결과: 알코올 섭취 1시간 후에 알코올 섭취전과 비교하여 호흡 중 알코올 농도가 가장 높았고(p<0.001), 교정굴절력의 구면 (-)굴절력 증가(p<0.05), 동공 크기의 감소(p<0.05), 안압의 하강(p<0.001), 그리고 안구축의 길이 증가가 나타났다. 알코올 섭취 4시간 후에도 모든 측정값들이 섭취 1시간 후와 동일한 경향이었다. 그러나 알코올 섭취 24시간 후에는 알코올 섭취 전과 비교하여 의의 있는 변화를 보이지 않았다. 결론: 알코올 섭취로 인한 일시적인 근시성 굴절변화는 안압하강과 안구축의 길이 변화와 관련성이 있을 것으로 판단된다.

압입자 첨단마모에 따른 나노압입곡선의 변화 및 이의 보정기법 (Variation of Nanoindentation Curve due to Wear of Indenter Apex and Its Correction Method)

  • 이윤희;김용일;박종서;김광호
    • 비파괴검사학회지
    • /
    • 제33권2호
    • /
    • pp.129-137
    • /
    • 2013
  • 나노압입시험기의 힘교정과 압입자에 대한 3차원 형상 관찰 및 분석이 본 연구에서 진행되었다. 표준분동으로 교정한 마이크로밸런스로 나노압입시험기에서 발생시킨 하중을 측정하여 측정치와 발생치의 비로 압입하중을 교정하였고, 나노압입시험의 시작점인 초기 접촉 하중도 확인할 수 있었다. 삼각뿔 압입자를 원자현미경으로 관찰하여 분석한 결과 비교적 사용이력이 없는 압입자 A와 마모된 압입자 B의 첨단곡률반경은 각각 $19.71{\pm}3.03$ nm와 $1043.94{\pm}50.91$ nm로 결정되었다. 완벽한 삼각뿔 압입자 형상과 중첩하여 압입자 A와 B의 첨단무딘깊이(bluntness depth)를 1.22 nm와 64.56 nm로 결정하였고, 용해실리카 기준시편에 수행한 나노압입시험 결과를 살펴본 결과 두 압입자의 압입하중-변위곡선들이 무딘깊이 차이만큼 수평축으로 서로 어긋나 있음을 확인할 수 있었다. 수평 이동을 통해 보정된 압입곡선의 분석을 통해 개별 압입자 면적함수에 대한 고려없이 1.11 % 이내에서 동일한 용해실리카의 나노경도를 결정할 수 있었다.