• 제목/요약/키워드: Curse of dimensionality

검색결과 58건 처리시간 0.03초

Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화 (Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization)

  • 박건준;김용갑;오성권
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Energy-Saving Oriented On/Off Strategies in Heterogeneous Networks : an Asynchronous Approach with Dynamic Traffic Variations

  • Tang, Lun;Wang, Weili;Chen, Qianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5449-5464
    • /
    • 2018
  • Recent works have validated the possibility of reducing the energy consumption in wireless heterogeneous networks, achieved by switching on/off some base stations (BSs) dynamically. In this paper, to realize energy conservation, the discrete time Markov Decision Process (DTMDP) is developed to match up the BS switching operations with the traffic load variations. Then, an asynchronous decision-making algorithm, which is based on the Bellman equation and the on/off priorities of the BSs, is firstly put forward and proved to be optimal in this paper. Through reducing the state and action space during one decision, the proposed asynchronous algorithm can avoid the "curse of dimensionality" occurred in DTMDP frequently. Finally, numerical simulations are conducted to validate the effectiveness and advantages of the proposed asynchronous on/off strategies.

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Smoothed Local PC0A by BYY data smoothing learning

  • Liu, Zhiyong;Xu, Lei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.109.3-109
    • /
    • 2001
  • The so-called curse of dimensionality arises when Gaussian mixture is used on high-dimensional small-sample-size data, since the number of free elements that needs to be specied in each covariance matrix of Gaussian mixture increases exponentially with the number of dimension d. In this paper, by constraining the covariance matrix in its decomposed orthonormal form we get a local PCA model so as to reduce the number of free elements needed to be specified. Moreover, to cope with the small sample size problem, we adopt BYY data smoothing learning which is a regularization over maximum likelihood learning obtained from BYY harmony learning to implement this local PCA model.

  • PDF

모양 정보의 회귀추정에 의한 내용 기반 이미지 검색 기법 (Contents-based Image Retrieval Using Regression of Shape Features)

  • 송준규;최황규
    • 디지털콘텐츠학회 논문지
    • /
    • 제2권2호
    • /
    • pp.157-166
    • /
    • 2001
  • 본 논문은 내용 기반 이미지 검색 시스템에서 이미지의 위치 및 모양 정보에 의한 회귀선을 추정하여 효율적으로 특징 벡터 추출함과 동시에 같은 도메인상의 특징 벡터가 일정 수준보다 많아질 경우 효율적으로 특징 벡터의 차원을 줄이는 기법을 제안한다. 특히, 특징 벡터의 차원을 줄이는 제안된 기법은 특징 벡터의 수에 관계없이 특정한 n개의 특징 벡터로의 변환이 가능하다. 본 논문에서 제안된 기법들은 실제 내용 기반 이미지 검색 시스템의 구현을 통해 기존의 방법보다 효율적인 검색은 물론 다차원 특징 벡터를 특정 n차원의 특징 벡터로 변환함으로써 다차원 색인 기법이 가지고 있는 가장 큰 단점인 '차원의 저주' 문제를 근본적으로 해결할 수 있는 방법임을 보인다.

  • PDF

Neuro-Fuzzy Systems: Theory and Applications

  • Lee, C.S. George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.29.1-29
    • /
    • 2001
  • Neuro-fuzzy systems are multi-layered connectionist networks that realize the elements and functions of traditional fuzzy logic control/decision systems. A trained neuro-fuzzy system is isomorphic to a fuzzy logic system, and fuzzy IF-THEN rule knowledge can be explicitly extracted from the network. This talk presents a brief introduction to self-adaptive neuro-fuzzy systems and addresses some recent research results and applications. Most of the existing neuro-fuzzy systems exhibit several major drawbacks that lead to performance degradation. These drawbacks are the curse of dimensionality (i.e., fuzzy rule explosion), inability to re-structure their internal nodes in a changing environment, and their lack of ability to extract knowledge from a given set of training data. This talk focuses on our investigation of network architectures, self-adaptation algorithms, and efficient learning algorithms that will enable existing neuro-fuzzy systems to self-adapt themselves in an unstructured and uncertain environment.

  • PDF

Acrobot Swing Up Control을 위한 Credit-Assigned-CMAC-based 강화학습 (Credit-Assigned-CMAC-based Reinforcement Learn ing with Application to the Acrobot Swing Up Control Problem)

  • 장시영;신연용;서승환;서일홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.517-524
    • /
    • 2004
  • For real world applications of reinforcement learning techniques, function approximation or generalization will be required to avoid curse of dimensionality. For this, an improved function approximation-based reinforcement teaming method is proposed to speed up convergence by using CA-CMAC(Credit-Assigned Cerebellar Model Articulation Controller). To show that our proposed CACRL(CA-CMAC-based Reinforcement Learning) performs better than the CRL(CMAC- based Reinforcement Learning), computer simulation and experiment results are illustrated, where a swing-up control Problem of an acrobot is considered.

Acrobot Swing Up 제어를 위한 Credit-Assigned-CMAC 기반의 강화학습 (Credit-Assigned-CMAC-based Reinforcement Learning with application to the Acrobot Swing Up Control Problem)

  • 신연용;장시영;서승환;서일홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.621-624
    • /
    • 2003
  • For real world applications of reinforcement learning techniques, function approximation or generalization will be required to avoid curse of dimensionality. For this, an improved function approximation-based reinforcement learning method is proposed to speed up convergence by using CA-CMAC(Credit-Assigned Cerebellar Model Articulation Controller). To show that our proposed CACRL(CA-CMAC-based Reinforcement Learning) performs better than the CRL(CMAC-based Reinforcement Learning), computer simulation results are illustrated, where a swing-up control problem of an acrobot is considered.

  • PDF

투사지향방법에 의한 판별분석의 모의실험분석 (A simulation study on projection pursuit discriminant analysis)

  • 안윤기;이성석
    • 응용통계연구
    • /
    • 제5권1호
    • /
    • pp.103-111
    • /
    • 1992
  • 다변량 통계분석기법중 하나로 제기된 투사지향방법은 다변량자료를 관심있는 일차원 또는 이차원의 자료로의 선형투사를 찾아 나가는 방법이다. 이 방법은 다변량 자료가 갖는 차원의 문제를 해결해 줄 수 있는 유용한 기법으로 제시되었다. 본 연구에서는 투사지향방법을 이용하여 추정한 다변량 확률밀도함수를 사용한 새로운 비모수적인 판별분석방법을 제시하고, 이를 기존의 모수적 판별분석방법중 실제적으로 많이 사용되는 선형판별함수방법, 그리고 기존의 비모수적 판별분석방법중 계산상의 편리성이 많은 K-최인접방법과 컴퓨터 시뮬레이션을 통하여 비교분석하였다.

  • PDF

복잡계 네트워크를 이용한 강화 학습 구현 (Reinforcement Learning with Small World Network)

  • 이승준;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.232-234
    • /
    • 2004
  • 강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)이다. 문제가 커짐에 따라 목적을 이루기 위해서 더 않은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위칠 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다. 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 이러한 문제점들을 해결하기 위해 복잡계 네트워크(Complex Network)가 갖는 작은 세상 성질(Small world Property)에 착안하여 자기조직화 하는 생장 네트워크(Self organizing growing network)를 기반으로 한 환경 표현 모델이 제안된 바 있다. 이러한 모델에서는 문제 크기가 커지더라도 네트워크의 사이즈가 크게 커지지 않기 때문에 문제의 난이도가 크기에 따라 크게 증가하지 않을 것을 기대할 수 있다. 본 논문에서는 이러한 환경 모델을 사용한 강화 학습 알고리즘을 구현하고 실험을 통하여 각 모델이 강화 학습의 문제 사이즈에 따른 성능에 끼치는 영향에 대해 알아보았다.

  • PDF