• Title/Summary/Keyword: Curriculum Standards

Search Result 623, Processing Time 0.019 seconds

Design and Implementation of IoT based Low cost, Effective Learning Mechanism for Empowering STEM Education in India

  • Simmi Chawla;Parul Tomar;Sapna Gambhir
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.163-169
    • /
    • 2024
  • India is a developing nation and has come with comprehensive way in modernizing its reducing poverty, economy and rising living standards for an outsized fragment of its residents. The STEM (Science, Technology, Engineering, and Mathematics) education plays an important role in it. STEM is an educational curriculum that emphasis on the subjects of "science, technology, engineering, and mathematics". In traditional education scenario, these subjects are taught independently, but according to the educational philosophy of STEM that teaches these subjects together in project-based lessons. STEM helps the students in his holistic development. Youth unemployment is the biggest concern due to lack of adequate skills. There is a huge skill gap behind jobless engineers and the question arises how we can prepare engineers for a better tomorrow? Now a day's Industry 4.0 is a new fourth industrial revolution which is an intelligent networking of machines and processes for industry through ICT. It is based upon the usage of cyber-physical systems and Internet of Things (IoT). Industrial revolution does not influence only production but also educational system as well. IoT in academics is a new revolution to the Internet technology, which introduced "Smartness" in the entire IT infrastructure. To improve socio-economic status of the India students must equipped with 21st century digital skills and Universities, colleges must provide individual learning kits to their students which can help them in enhancing their productivity and learning outcomes. The major goal of this paper is to present a low cost, effective learning mechanism for STEM implementation using Raspberry Pi 3+ model (Single board computer) and Node Red open source visual programming tool which is developed by IBM for wiring hardware devices together. These tools are broadly used to provide hands on experience on IoT fundamentals during teaching and learning. This paper elaborates the appropriateness and the practicality of these concepts via an example by implementing a user interface (UI) and Dashboard in Node-RED where dashboard palette is used for demonstration with switch, slider, gauge and Raspberry pi palette is used to connect with GPIO pins present on Raspberry pi board. An LED light is connected with a GPIO pin as an output pin. In this experiment, it is shown that the Node-Red dashboard is accessing on Raspberry pi and via Smartphone as well. In the final step results are shown in an elaborate manner. Conversely, inadequate Programming skills in students are the biggest challenge because without good programming skills there would be no pioneers in engineering, robotics and other areas. Coding plays an important role to increase the level of knowledge on a wide scale and to encourage the interest of students in coding. Today Python language which is Open source and most demanding languages in the industry in order to know data science and algorithms, understanding computer science would not be possible without science, technology, engineering and math. In this paper a small experiment is also done with an LED light via writing source code in python. These tiny experiments are really helpful to encourage the students and give play way to learn these advance technologies. The cost estimation is presented in tabular form for per learning kit provided to the students for Hands on experiments. Some Popular In addition, some Open source tools for experimenting with IoT Technology are described. Students can enrich their knowledge by doing lots of experiments with these freely available software's and this low cost hardware in labs or learning kits provided to them.

Risk Education and Educational Needs Related to Science and Technology: A Study on Science Teachers' Perceptions (중등 과학교사들이 생각하는 과학기술 관련 위험교육 실태와 교육 요구)

  • Jinhee Kim;Jiyeon Na;Yong Wook Cheong
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.57-75
    • /
    • 2024
  • This study aimed to investigate the current state and educational needs of risk education related to science and technology as perceived by secondary science teachers. A survey was conducted with a total of 366 secondary science teachers. The results are as follows. First, There were more teachers who had not provided education on risks arising from science and technology in terms of risk perception, risk assessment, and risk management than those who had not. Global warming was the most common risk taught by teachers, followed by earthquakes, artificial intelligence, and traffic accidents. Second, teachers recognized that they lacked understanding that the achievement standards of the 2022 revised science curriculum include risks that may occur due to science and technology, but they thought they were prepared to teach. Third, teachers recognized that their understanding of risk perception was higher than that of risk management and risk assessment. Fourth, the experience of teachers in training on risk was very limited, with fewer having training in risk assessment and risk management compared to risk perception. The most common training experienced was in laboratory safety. Fifth, teachers recognized that their capabilities for the 10 goals of risk education were not high. Middle school teachers or teachers majoring in integrated science education evaluated their capabilities relatively highly. Sixth, many teachers thought it was important to address risks in school science education. They prioritized 'information use', 'decision-making skills', and 'influence of mass media', in that order, for importance and called for urgent education in 'action skills', 'information use', and 'influence of risk perception'. Seventh, as a result of deriving the priorities of education needs for each of the 10 goals of risk education, 'action skills', 'influence of risk perception', and 'evaluate risk assessment' were ranked 1st, 2nd, and 3rd, respectively.

A Study on the Development of Educational Smart App. for Home Economics Classes(1st): Focusing on 'Clothing Preparation Planning and Selection' (가정과수업을 위한 교육용 스마트 앱(App) 개발연구(제1보): 중1 기술·가정 '의복 마련 계획과 선택'단원을 중심으로)

  • Kim, Gyuri;Wee, Eunhah
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.3
    • /
    • pp.47-66
    • /
    • 2023
  • The purpose of this study was to develop an educational smart app for classes by reconstructing some of the teaching-learning contents of the clothing preparation planning within the 'clothing preparation planning and selection' curriculum unit. To this end, a teaching-learning process plan was planned for the classes, a smart app was developed for classes, and feedback from home economics teachers and app development experts was received for the developed app. The main composition of the developed app consists of five steps. The first step is to set up a profile using a real photo, ZEPETO or Galaxy emoji, or iPhone Memoji. In the second step, students make a list of clothes by figuring out the types, quantities and conditions of their exisitng wardrobe items. Each piece of clothing is assigned an individual registration number, and stduents can take pictures of the front and back, along with describing key attributes such as type, color, season-appropriateness, purchase date, and current status. Step three guides students in deciding which garments to retain and which to discard. Building on the clothing inventory from the previous step, students classify items to keep and items to dispose of. In Step 4, Deciding How to Arrange Clothing, students decide how to arrange clothing by filling out an alternative scorecard. Through this process, students can learn in advance the subsection of resource management and self-reliance, laying the foundationa for future learning in 'Practice of Rational Consumption Life'. Lastly, in the fifth stage of determining the disposal method, this stage is to develop practical problem-oriented classes on how to dispose of the clothes to be discarded in the thirrd stage by exploring various disposal methods, engaging in group discussions, and sharing opinions. This study is meaningful as a case study as an attempt to develop a smart app for education by an instructor to align teaching plans and educational content with achievement standards for the class. In the future, upgrades will have to be made through user application.