• 제목/요약/키워드: Currents signal

검색결과 208건 처리시간 0.025초

Hollow Cathode Discharge에서 플라즈마 특성에 관한 연구 (Study on Characteristics of Plasma in Hollow Cathode Discharge)

  • 윤만영;신종순
    • 한국인쇄학회지
    • /
    • 제23권2호
    • /
    • pp.93-101
    • /
    • 2005
  • The measured plasma temperature of Ar hollow cathode discharge for several metal cathodes are about $620\;{\sim}\;780K$ at discharge current of $7\;{\sim}\;10mA$. The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

Comparison of Starting Current Characteristics for Three-Phase Induction Motor Due to Phase-control Soft Starter and Asynchronous PWM AC Chopper

  • Thanyaphirak, Veera;Kinnares, Vijit;Kunakorn, Anantawat
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1090-1100
    • /
    • 2017
  • This paper presents the comparison of starting current characteristics of a three-phase induction motor fed by two types of soft starters. The first soft starter under investigation is a conventional AC voltage controller on the basis of a phase-control technique. The other is the proposed asynchronous PWM AC chopper which is developed from the conventional synchronous PWM AC chopper. In this paper, the proposed asynchronous PWM AC chopper control scheme is developed by generating only two asynchronous PWM signals for a three-phase main power circuit (6 switching devices) from a single voltage control signal which is compared with a single sawtooth carrier signal. By this approach, the PWM signals are independent and easy to implement since the PWM signals do not need to be synchronized with a three-phase voltage source. Details of both soft starters are discussed. The experimental and simulation results of the starting currents are shown. It is found that the asynchronous PWM AC chopper efficiently works as a suitable soft starter for the three-phase induction motor due to that the starting currents are reduced and are sinusoidal with less harmonic contents, when being compared with the starting current waveforms using the conventional phase-control starting technique. Also the proposed soft starter offers low starting electromagnetic torque pulsation.

기준신호용 그리드와 절연/독립접지방식의 비교 (Performance Comparison of Signal Reference Grid and Insulated/Isolated Ground Using HIFREQ Simulator)

  • 백승현;김경철;최종기
    • 조명전기설비학회논문지
    • /
    • 제18권5호
    • /
    • pp.69-73
    • /
    • 2004
  • 본 논문은 낙뢰나 스위칭 등에 의해 건물 내에서 발생할 수 있는 과도 현상에 대하여, 기준신호그리드와 절연/독립접지 방식을 비교한 것이다. 전자계 해석프로그램인 HIFREQ을 이용함으로써 정량적인 해석결과에 근거하여 건물내 접지방식의 차이에 따라 접지점에서 어떠한 과도현상이 발생하는지의 고찰이 가능하였다. 본 논문에서 시도한 건축물 내 과도현상 해석방법 및 사례연구 결과는 정보화 건축물에 필요한 접지 방식의 선정을 위한 자료로 활용될 것으로 기대된다.

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • 제16권1호
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

FPGA를 이용한 네모파 전압전류법의 계측시간 분석 (Determination of measuring time for decision of heavy metal ion concentration in Square Wave Voltammetry with FPGA)

  • 이재춘
    • 디지털산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.25-31
    • /
    • 2016
  • In this research, to analyze the concentration of heavy metal ions in water, we tried to find the measuring time at which the faradaic electric currents flowing by the pure oxidation-reduction reaction from the pushing up mercury electrode of the stripping scan square wave voltammetry(SV+SWV) methods system becomes larger than the capacitance electric current. In order to do this, a method for analyzing signals using FPGA has been designed and we conducted 120 experiments using it. As a result, when the frequency of the square wave is 40Hz, The valid potential-current signal was measured from 96.6667% to 96.7155% of the end of the pulse of the forward and reverse, and the optimal signal was measured at 96.6667%. In addition, the experiment was carried out 40 times by changing the pulse height of the square wave from 10Mv to 40Mv. As a result, at a size smaller than 40Mv, there is little change in the magnitude of the potential-current, and an invalid signal was generated when it is out of this size.

용접선 추적용 전자기센서의 제어시스템 개발 (Development of a Dual Electromagnetic Sensor-Based Weld Line Seam Tracking System)

  • 조방현;민기업;아미트;김동호;김수호;권순창
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.144-146
    • /
    • 2005
  • Dual electromagnetic sensor is used for sensing the weld line. The sensor consists of excitation and two sensing coil wound over the ferro-magnetic core. By using the dual sensor, the effect of noise is minimized. It is based on the generation of eddy currents in the welding plate by passing current through the excitation coil. The sensor can be used to track the butt joints having no gap between them, where a vision based sensor fails to track. Sensor sensitivity depends on the number of coil turns, frequency of excitation, distance of a sensor from the work piece, diameter of core, etc. The whole system consists of a sensor, a signal processing board, a motion controller and a personnel computer (PC). The raw sensor signal is processed using the signal processing board. It consists of amplification, rectification, filtering, averaging, offset adjustment, etc. Based on sensor data, the motion controller adjusts the position of a welding torch.

  • PDF

Analysis of signal cable noise currents in nuclear reactors under high neutron flux irradiation

  • Xiong Wu;Li Cai;Xiangju Zhang;Tingyu Wu;Jieqiong Jiang
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4628-4636
    • /
    • 2023
  • Cables are indispensable in nuclear power plants for transmitting data measured by various types of detectors, such as self-powered neutron detectors (SPNDs). These cables will generate disturbing signals that must be accurately distinguished and eliminated. Given that the cable current is not very significant, previous research has focused on SPND, with little attention paid to cable evaluation and validation. This paper specifically focuses on the quantitative analysis of cables and proposes a theoretical model to predict cable noise. In this model, the reaction characteristics between irradiated neutrons and cables were discussed thoroughly. Based on the Monte Carlo method, a comprehensive simulation approach of neutron sensitivity was introduced and long-term irradiation experiments in a heavy water reactor (HWR) were designed to verify this model. The theoretical results of this method agree quite well with the experimental measurements, proving that the model is reliable and exhibits excellent accuracy. The experimental data also show that the cable current accounts for approximately 0.2% of the total current at the initial moment, but as the detector gradually depletes, it will contribute more than 2%, making it a non-negligible proportion of the total signal current.

선형 동기 전동기가 있는 축소형 자기부상열차의 추진 제어 (Propulsion Control of a Small Maglev Train with Linear Synchronous Motors)

  • 박진우;김창현;박도영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1838-1844
    • /
    • 2011
  • In this paper, the propulsion control of a high-speed maglev train is studied. Electromagnetic suspension is used to levitate the vehicle, and linear synchronous motors (LSM) are used for propulsion. In general, a low-speed maglev train uses a linear induction motor (LIM) for propulsion that is operated under 300[km/h] due to the power-collecting and end-effect problem of LIM. In case of the high-speed maglev train over 500[km/h], a linear synchronous motor (LSM) is more suitable than LIM because of a high-efficiency and high-output properties. An optical barcode positioning system is used to obtain the absolute position of the vehicle due to its wide working distance and ease of installation. However, because the vehicle is working completely contactless, the position measured on the vehicle has to be transmitted to the ground for propulsion control via wireless communication. For this purpose, Bluetooth is used and communication hardware is designed. A propulsion controller using a digital signal processor (DSP) in the ground receives the delayed position information, calculates the required currents, and controls the stator currents through inverters. The performance of the implemented propulsion control is analyzed with a small maglev train which was manufactured for experiments, and the applicability of the high-speed maglev train will be explored.

  • PDF

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

CCVT 2차 전압 보상 방법 (Compensation Algorithm of CCVT's Secondary Voltages)

  • 강용철;이병은;김은숙;정태영;이지훈;소순홍;차선희;김연희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.93-95
    • /
    • 2005
  • Coupling capacitor voltage transformers (CCVT) are widely used in high voltage power systems to obtain standard low voltage signal for protective relaying and measuring instruments. To obtain high accuracy, capacitances and inductances are tuned to the power system frequency, making a parallel resonant circuit. When no fault occurs, no distortion of the secondary voltage is generated. However, when a fault occurs, harmonics generated break the resonance between capacitances and inductance, which generates the distortion of the secondary voltage. This paper proposes an algorithm for compensating the secondary voltage of the CCVT. With the values of the secondary voltage of the CCVT, the secondary currents, the primary currents and the voltages across the capacitors and inductor are calculated. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT, and is irrespective of the fault distance, the fault inception angle and the burden.

  • PDF