• Title/Summary/Keyword: Current-source rectifier

Search Result 145, Processing Time 0.027 seconds

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

A New Overlap Current Restraining Method for Current-source Rectifier

  • Qin, Haihong;Liu, Qing;Zhang, Ying;Zhang, Xin;Wang, Dan
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.615-626
    • /
    • 2018
  • To ensure a DC current path and avoid large voltage overshoot of the DC-link inductor, alternating PWM pulses in the current-source rectifier should be supplemented by overlap time, which generates an overlap current and causes input current distortion. In this study, the influence of overlap time is illustrated by comparing the AC-side current before and after overlap time is added. The overlap current distribution caused by overlap time is discussed under different modulation carriers, including triangle carrier, positive-going carrier, and negative-going carrier. The quantitative relationship between the extra harmonics of the AC-side current and overlap time is based on the Fourier analysis. Based on the commutation analysis, a new carrier modulation scheme that can restrain overlap current is proposed. A 3 kW prototype is established to verify the effectiveness of the influence of overlap time and the proposed restraining modulation scheme.

Drawing Sinusoidal Input Currents of Series-Connected Diode Rectifiers by A Current Injection Technique (직렬접속형 다이오드 정류기 시스템의 전류주입에 의한 고조파 저감)

  • O, Jun-Yong;Choe, Se-Wan;Kim, Yeong-Seok;Won, Chung-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.640-645
    • /
    • 1999
  • This paper proposes a new series-connected diode rectifier which draws sinusoidal input currents. The proposed rectifier system is configured by adding an auxiliary circuit to the conventional 12-pulse series-connected diode rectifier and employing a current injection technique. A low kVA($0.02P_{\circ}$(PU) ) active current source injects a triangular current into the interphase reactor of the diode rectifier. The current injection results in near sinusoidal input current from the utility with less than 1% THD. The resulting system is suitable for high voltage and high power applications. Experimental and simulation results are provided from a 220V, 3kVA prototype rectifier system.

  • PDF

A Fully Software-Controlled PWM Rectifier with Current Link (전류링크를 갖는 PWM 정류기의 전소프트웨어 제어)

  • Kwon, Bong-Hwan;Min, Byung-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.995-998
    • /
    • 1992
  • A fully software-controlled pulse-width modulatioed (PWM) rectifier with current link is presented. Line power factor is controlled, while maintaining dc current. The input fitter of the PWM rectifier is analyzed and its analysis, shows that unity power factor is achieved with lagging of the input current of the PWM rectifier with respect to the source voltage. The PWM technique is developed using a space vector modulation and is implementation is carried out with a minimal control hardware structure based on one 16-bit single-chip microcomputer. It is shown via experimental results that the proposed sheme gives good performance for the PWM rectifier with current link.

  • PDF

Four switch three-phase Z-source rectifier with reduced capacitor values

  • ANVAR, IBADULLAEV;Yoo, Dae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.303-304
    • /
    • 2014
  • This paper describes Four Switch Three-Phase Z-Source rectifier with reduced value capacitors. This configuration has some advantages in term of small size of the circuit. The rectifier has buck-boost function by shoot-through state. Also, the rectifier has the advantage of decreasing inrush current in start-up and transient states. In order to reduce harmonics PWM modulation technique with a variable index has been suggested. Four Switch Three-Phase Z-Source rectifier with reduced value capacitors can output stable DC. Principles and dynamics of the system are discussed in detail.

  • PDF

A Current Source using the 12-Pulse Phase-Controlled Rectifier (12-펼스 위상제어 정류기를 사용한 전류원)

  • 송의호;권봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.545-556
    • /
    • 1990
  • A design method of a current source using 12-pulse phase-controlled rectifier (PCR) is presented. The critical inductance of the 12-pulse PCR is derived and it is shown that the critical inductance can be reduced using a current source. The control circuit of the 12-pulse PCR with an inner fast dynamic loop is proposed to give the frequency synchronism and to reduce the subharmonics due to the unbalance of the transformer of the power line. This circuit is analyzed and its dynamic loop is optimized. The optimal constant PIMF (proportional, integral and measurable variable feedback, and feedforware) controller is also designed using the time-weighted quadratic performance index. It is shown via experimental results that the proposed design method gives high dynamic and static performance of the current source using the 12-pulse PCR.

Design of New Induction Heating Power Supply for Forging Applications Using Current-Source PWM Converter and Inverter (전류원 PWM 컨버터 / 인버터를 이용한 새로운 단조용 유도가열 전원장치의 설계)

  • Choi, Seung-Soo;Lee, Chang-Woo;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1602-1610
    • /
    • 2018
  • Induction heating can convert electrical energy to thermal energy with high conversion efficiency and quick heating. Currently, a current source rectifier/inverter-fed parallel resonant circuit is widely used as an induction heating power supply for forging applications. However, the conventional induction heating power supplies composed of phase-controlled rectifier and SCR inverter have low efficiency and low power factor at input side, and require additional starting circuitry. So this paper proposes new induction heating power supply topologies for forging applications which have high power factor, high efficiency, and large output power. It also suggests detailed design guideline.

Z-Source Four-Switch Three-Phase PWM Rectifier with Wide DC Output Voltage Control Region (넓은 직류 출력전압 제어영역을 갖는 Z-소스 Four-Switch 3상 PWM 정류기)

  • Zhu, Sha;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.275-276
    • /
    • 2013
  • In this paper, we proposed the Z-source four-switch three-phase rectifier. As we know, the conventional Four-Switch Three-Phase Rectifier(FSTPR) has advantages of the lower cost and less complex switching control. However, The conventional FSTPR can only either perform buck or boost operation, it can only attain the buck-boost operation by adding another DC-DC converter. In addition, besides its narrow output voltage region, distortion of the input current is serious either. Thus, we proposed the Z-source FSTPR which has buck-boost function and better input current waveform by applying the Z-impedance network to the conventional FSTPR. The validity of the proposed system was confirmed by experiments.

  • PDF

CURRENT-CONTROLLED PWM-RECTIFIER WITH di/dt FEEDBACK/VOLTAGE-SOURCE INVERTER WITHOUT DC LINK COMPONENTS FOR INDUCTION MOTOR DRIVE

  • Iimori, Kenichi;Shinohara, Katsuji;Muroya, Mitsuhiro;Kitanaka, Hidetoshi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.524-528
    • /
    • 1998
  • The voltage-source inverters are normally equipped with an electrolytic capacitor in their DC link, however, the electrolytic capacitor has several disadvantages such as increasing size, limiting converter life and reliability. Therefore, several approaches for removing the DC link capacitor have been studied by the authors. This paper proposes a new voltage-source inverter without DC link components. To reduce waveform distortion of the AC source current, the current-controlled PWM-rectifier with di/dt feedback is introduced. The di/dt feedback gain and LC parameters are investigated by calculation for a 0.75kW induction motor driven by this inverter. The calculated AC source currents maintain nearly sinusoidal waveforms with a unity power factor.

  • PDF

Active Disturbance Rejection Control for Single-Phase PWM Rectifier with Current Decoupling Control

  • Yan, Ruitao;Wang, Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2354-2363
    • /
    • 2018
  • This paper proposed a novel double closed control strategy for single-phase voltage source pulse width modulation (PWM) rectifier based on active disturbance rejection control (ADRC) and dq current decoupling control. First, the mathematical model of the single-phase PWM rectifier in the d-q axis synchronous rotating reference frame is established by constructing a virtual component using a second-order generalized integrator (SOGI). Then, the mathematical model is simplified according to the active power conservation, and the first-order equation of single-phase PWM rectifier voltage outer loop is acquired. A linear auto-disturbance rejection controller is used to design the voltage outer loop according to the first-order equation. Finally, the proposed control strategy and the traditional PI control are compared and verified by simulation and physical experiments. Both simulation and experimental results confirm that the proposed control strategy has excellent dynamic performance and strong rejection ability to disturbances.