• Title/Summary/Keyword: Current-fed dc/dc Converter

Search Result 104, Processing Time 0.02 seconds

A Study on the Novel Time Sharing Type Current Fad High Frequency Resonant Inverter (새로운 시분할 방식 전류형 고주파 인버터에 관한 연구)

  • Kim H.J.;Won J.S.;Kang J.W.;Cho G.P.;Oh S.H.;Min B.J.;Jung D.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.27-30
    • /
    • 2003
  • This paper describes two novel current fed high frequency resonant inverter can be used as the power supp]y for wax-sealing. This two topology can be obtained higher output frequency than switching frequency by composing modified unit inverter based on conventional half-bridge serial resonant inverter in parallel with input power source. also, By using time-sharing gate control method, this proposed inverter can not only realize the output control of dependence irrespective of the switching frequency using phase-shift but also reduce switching loss because it has ZVS function. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Ride-through of DFIG Wind Turbine Systems Using Energy Storage Unit

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.184-185
    • /
    • 2010
  • This paper deals with a ride-through technique of doubly-fed induction generator (DFIG) wind turbine systems using energy storage unit (ESU). By increasing the machine speed, some portion of the turbine power can be stored in the system inertia during grid faults. Also keeping the operation of rotor-side converter (RSC) and grid-side converter (GSC), the rotor current and DC-link voltage can be limited. The effectiveness of the proposed method is verified by simulation results for 2[MW] DFIG wind turbine system.

  • PDF

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

Implementation of Vector Control system for $3\phi$ Induction Motor (3상 유도 전동기 벡터제어 구동시스템의 구현)

  • 홍순일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • In recent year, inverters and cycloconverters system are widely used for fed induction motor drives. Motor drives by cycloconverter is possible to frequency have been directly changed without AC/DC converter, so that circuits is simpler than inverter. A aims of this paper is the control strategy and hardware design for vector control system by cycloconverter fed induction motor drives. In this paper, Algorithm of vector control is derivlid from the model of controlled current source-fed induction motor. Vector control system is implemented using these algorithm and a pulse width controled cycloconverter using a SCR. Cycloconverter of vector control system is controlled by pulse width of SCR's trigger signal. pulse width is controlled primary command current $li_1l$ and frequency TEX>$\omega_1$..

  • PDF