• Title/Summary/Keyword: Current waveform analysis

Search Result 212, Processing Time 0.028 seconds

A Study on High Impedance Fault Detection using Wavelet Transform and Neural-Network (웨이브릿 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구)

  • Hong, Dae-Seung;Ryu, Chang-Wan;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.856-858
    • /
    • 1999
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device. It is well known that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional Protection system. This paper describes an algorithm using neural network for pattern recognition and detection of high impedance faults. Wavelet transform analysis gives the time-scale information. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

Comparative Analysis of Single stage Power Factor Correction Circuit (단상 전원에 적용되는 수동 및 능동 역률개선회로의 특성)

  • Kim, Cherl-Jin;Kim, Choong-Sik;Yoo, Byeong-Kyu;Yoon, Shin-Yong;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.166-168
    • /
    • 2004
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic order contents. Typically, these SMPS have a power factor lower than 0,7. To improve with this problem the power factor correction(PFC) circuit of power supplies has to be introduced. Specially, to the reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. In this paper, comparative analysis of Valley-fill, boost and feedforward type single stage power factor correction circuit based on the flyback converter is given. Also, the validity of designed three type of single stage PFC circuit are confirmed by simulation and experimental results.

  • PDF

A Study on High Impedance Fault Detection using Wavelet Transform and Chaos Properties (웨이브릿 변환과 카오스 특성을 이용한 고저항 지락사고 검출에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2525-2527
    • /
    • 2000
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device operating, so it is well known that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion. Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents detections in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. Wavelet transform analysis is applied the time-scale information to fault signal. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

Dynamic Analysis and Experiments of Moving-Magnet Linear Actuator with/without Spring (스프링 유무에 따른 가동자석형 직선형 액추에이터의 동특성해석 및 실험)

  • Jang Seok-Myeong;Choi Jang-Young;You Dae-Joon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • This paper deals with the dynamic analysis and experiments of moving-magnet linear actuator with/without spring. On the basis of two dimensional (2-D) analytical solutions and experiments, control parameters such as thrust constant, back-emf constant, inductance and resistance are obtained. And then, dynamic simulation algorithm is established from the voltage and motion equation. Finally, for various values of frequency, dynamic simulation results for characteristics of current and displacement of moving-magnet linear actuator with and without spring are presented and confirmed through the experiments. In particular, This paper applies the PWM voltage waveform obtained from a DSP for bidirectional voltage drive to the actuator.

Analysis the static thrust force and dynamic thrust force in HB-type Linear Pulse Motor (하이브리드형 선형 펄스모터의 정추력 및 동추력 분석)

  • Kim, Dong-Hee;Ahn, Jae-Young;Kim, Kwang-Heon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.214-216
    • /
    • 2007
  • The linear motor is available for linear transition motion, because of its advantages, the motor design and its application have gradually increased, but the quantitative measurement system of thrust force has not been generalized. Need analysis of correct thrust for control performance improvement of HB-LPM(HB-type Linear Pulse Motor). It is difficult to analyze HB-LPM's thrust. In this paper, HB-LPM's thrust is expressed to mathematical expression. And it is proved validity of this numerical formula by thrust measurement system. Two phase driver is composed. It is verified validity of numerical formula that measure waveform of electric current and voltage that is supplied in each phase.

  • PDF

Dynamic Analysis and Experiments of Moving Magnet Linear Actuator with/without Spring (스프링 유무에 따른 가동자석형 직선형 액추에이터의 동특성해석 및 실험)

  • Jang, Seok-Myeong;Choi, Jang-Young;You, Dae-Joon;Cho, Han-Wook;Park, Ji-Hoon;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.911-913
    • /
    • 2005
  • This paper deals with the dynamic analysis and experiments of moving-magnet lineal actuator with/without spring. On the basis of two dimensional(2-D) analytical solutions and experiments, control parameters are obtained. And then, dynamic simulation algorithm is established from the voltage and motion equation. Finally, for various values of frequency, dynamic simulation results for characteristics of voltage, current and displacement of moving-magnet linear actuator are presented and confirmed through the experiments. In particular, This paper makes the PWM voltage waveform using a DSP for bidirectional voltage drive

  • PDF

Leakage Current Waveforms of Outdoor Polymeric Insulators and Possibility of Application for Diagnostics of Insulator Conditions

  • Suwarno Suwarno
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.114-119
    • /
    • 2006
  • This paper reports the investigation results on the leakage currents (LC) on polymeric outdoor insulators. The samples used were EPDM (ethylene prophylene diene monomer) insulators used at 20 kV distribution lines. AC voltage was applied and the LC waveforms were measured under various environmental conditions (humidity and pollution). Digital data of the LC was transferred from a digital storage oscilloscope to a computer for further analysis. The LC waveform parameters such as magnitude and harmonic content (as indicated by the total harmonic distortion (THD)) were analyzed. The experimental results showed that 3rd, 5th and 7th harmonics and higher odd harmonics were observed for symmetrical-distorted LC waveforms while for unsymmetrical-distorted LC waveforms, odd and even harmonics were observed. The LC analysis indicated that there are 5 stages of insulator conditions from normal condition up to flashover correlated with different kind of LC waveforms. The results also showed that in general the magnitude of LC was good enough to show the condition of the insulators. However, under discharge condition (for example as a result of dry band arching) the LC magnitude should be combined by the THD to show a better correlation with the insulator condition. The product between THD and LC magnitude may be used as a diagnostic parameter.

A Transformer-less Boost Converter with High Gain and Low Current Ripple for Fuel Cell Application (연료전지 응용을 위한 높은 승압비와 낮은 전류리플을 갖는 무변압기형 부스트 컨버터)

  • Yang, Jin-Young;Park, Chan-Ki;Choi, Se-Wan;Nam, Seok-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.79-87
    • /
    • 2008
  • Boost Converters have been used to step up and regulate the low and widely varing voltage from the fuel cell. A transformer-less boost converter which does not have lossy, bulky, and costly high frequency transformers has an advantage in applications where galvanic isolation is not required. In this paper a new transformer-less boost converter is proposed. The proposed boost converter has practically usuable 6 to 8 times of step up ratio and is suitable for fuel cell applications due to very low input and output current ripples. The proposed converter is verified through the theorical analysis, simulation and experimental waveform.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF