• 제목/요약/키워드: Current waveform analysis

검색결과 212건 처리시간 0.022초

A New DPWM Method to Suppress the Low Frequency Oscillation of the Neutral-Point Voltage for NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1207-1216
    • /
    • 2015
  • In order to suppress the low frequency oscillation of the neutral-point voltage for three-level inverters, this paper proposes a new discontinuous pulse width modulation (DPWM) control method. The conventional sinusoidal pulse width modulation (SPWM) control has no effect on balancing the neutral-point voltage. Based on the basic control principle of DPWM, the relationship between the reference space voltage vector and the neutral-point current is analyzed. The proposed method suppresses the low frequency oscillation of the neutral-point voltage by keeping the switches of a certain phase no switching in one carrier cycle. So the operating time of the positive and negative small vectors is equal. Comparing with the conventional SPWM control method, the proposed DPWM control method suppresses the low frequency oscillation of the neutral-point voltage, decreases the output waveform harmonics, and increases both the output waveform quality and the system efficiency. An experiment has been realized by a neutral-point clamped (NPC) three-level inverter prototype based on STM32F407-CPLD. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed DPWM method.

ZCS를 이용한 고주파 공진형 상용주파수 전원에 관한 연구 (A Study on Commercial Frequency Source with High Frequency Resonant Type using ZCS)

  • 김종해;김동희;노채균;구태근;배상준;이봉섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권8호
    • /
    • pp.448-454
    • /
    • 1999
  • This paper describes a new dc-ac inverter system which for achieving sinusoidal ac waveform makes use of parallel loaded high frequency resonant inverter consisting of full bridge. Each one of the pair of switches in the inverter is driven to synchronous output frequency and the other is driven to PWM signal with resonant frequency proportional to magnitude of sine wave. A forced discontinuous conduction mode is used to realize the quasi-sinusoidal pulse in each switching period. Therefore the inverter generates sinusoidal modulated output voltage including carrier frequency that is resonant frequency. Carrier frequency components of modulated output voltage is filtered by low pass filter. Since current through switches is always zero at its turn-on in the proposed inverter, low stress and low switching loss is achieved. Operating characteristics of the proposed system is analyzed in per unit system using computer simulation. The output voltage of if includes low harmonics and it is almost close to sine wave. Also, the theoretical analysis is proved through the experimental test.

  • PDF

전동차 출입문 구동을 위한 SRM용 C-dump 컨버터 Topology 특성 비교 (Characteristic Analysis of C-dump Converter Topology for SRM of Electric Multiple Unit Door Driving)

  • 윤용호
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1597-1604
    • /
    • 2016
  • The speed at which the SRM (Switched Reluctance Motor) makes a transition from chopping control to single pulse operation. (i.e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on energy efficient C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

산업용 전기차량의 주행 모터용 보상된 Bang-Bang 전류제어기 개발 (The Development of Compensated Bang-Bang Current Controller for Travel Motor of Industry Electrical Vechicle)

  • 천영신;정영일;배종일;이만형
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.34-40
    • /
    • 1999
  • In order to establish the design technique of the robust current controller in d.c series wound motor driver system, this paper proposes a method of the compensated Bang-Bang current control using d.c series wound motor driver system under the improperly variable load to get minimum time for the torque control. The compensated Bang-Bang current controller structure is simpler than that of PID plus Bang-Bang controller. This paper shows that a general 16 bits microprocessor is efficiently used to implement such an algorithm. The calculation time of software is extremely small when compared with that of conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real-time implementation of the compensated Bang-Bang current controller is achieved. The concept of design strategy of the control and the PWM waveform generation algorithms are presented in this paper.

  • PDF

여러 환경조건에 대한 고분자애자의 누설전류 특성 변화 (Variation in Leakage Current Characteristics of Polymer Insulator for Various Environmental Condition)

  • 박재준;최인혁;이동일
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.169-175
    • /
    • 2006
  • This study investigated variation leakage current maximum value and waveform considering applied voltage phase angel by simulating three environmental conditions, such as fog, salt fog, and kaolin contamination .As the result of applied voltage phase angel characteristics, leakage currents presented almost in phases in the early stage regardless of environmental conditions just after applying the voltage, and the phase of leakage currents certain phase lags for the discharge of the applied voltage when surface discharges occurred due to the continuous environmental contamination. In addition, the difference in phase significantly increased according to the intensity of discharges. The change in distortion rates according to the environmental contamination presented a nearly same level just after applying the voltage. The distortion rate of third harmonic for the fundamental wave presented by the order of fog>salt fog>kaolin when surface discharges occurred due to the applied voltage for certain continued periods. In the case of the fog and salt fog, the scale of spectrums decreased according to the increase in frequencies from the results of the analysis of high frequencies. In addition, the even number frequency presented a relatively large level compared to the odd number frequency under the kaolin contamination.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

LCC 공진형 컨버터 기반의 고효율 커패시터 충전기 설계기법 (Design Method of High Efficiency Capacitor Charger Based on LCC Resonant Converter)

  • 정송찬;송승호;최민규;류홍제
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.325-331
    • /
    • 2022
  • This study proposes a design method that minimizes a conduction loss of LCC resonant converter under rated condition. Through a simplified analysis of the waveform of the resonant current, the power transfer section and RMS value of the resonant current was analyzed mathematically and graphically. Based on this analysis, the design method that minimizes the RMS value of the resonant current is proposed. To demonstrate this method, this study designed a 7.5 kW (100 V, 75 A) capacitor charger based on LCC resonant converter and the design parameters were chosen according to the process of the design method. Then, the capacitor charger was implemented. An experiment was conducted to measure efficiency while satisfying design specifications under rated conditions. This design method was verified to be effective by achieving 97.7% maximum efficiency and design specifications under rated conditions.

3상 매트릭스 컨버터의 고효율 변조방법 설계 및 시뮬레이션 (Design and Simulation of High Efficiency PWM Modulation Method for Three-phase Matrix Converter)

  • 임현주;차한주
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.337-344
    • /
    • 2012
  • A matrix converter is used for converting AC/AC power directly. In order to generate sinusoidal input/output waveform in matrix converter, it uses nine bidirectional switches and PWM modulation. This paper presents an analytical averaged loss model of matrix converter with DDPWM(direct duty ratio PWM) and proposes a new switching method for reducing switching losses. A Mathematical loss models with average magnitude of voltage/current are classed as conduction and switching loss. The proposed switching pattern is improved with existing DDPWM. To prove improved efficiency with proposed DDPWM, this paper compares losses between suggested switching pattern and conventional switching pattern using mathematical and simulation method. Each loss types are influenced by environmental factors such as temperature, switching frequency, output current and modulation method.

히스테리시스 전류제어기 구동 BLDCM의 전류(轉流)현상 해석 (Analysis of the Commutation Phenomenon in Brushless DC Motor with Hysteresis Current Regulator)

  • 강석주;김광헌;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.685-688
    • /
    • 1992
  • This paper studies the commutation phenomenon in the Brushless DC Motor with the trapezoidal BEMF waveform. It is shown that the torque ripple am the speed ripple due to the phase commutation depend on driving sytem, operating speed am load condition. The effects of resistance and BEMF flat width on torque ripple are considered. Speed - torque characteristics of the motor is presented considering the phase commutation. Uncommutating current control method can attenuate the torque ripple in the low speed region, and also minimize the switching loss am switching frequency. In this paper, the commutation phenomena are verified by analytical formulation and simulation.

  • PDF

Analysis on Core Loss of Brushless DC Motor Considering Pulse Width Modulation of Inverter

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1914-1920
    • /
    • 2014
  • In this paper, characteristics of blushless direct current (BLDC) motor including core loss are analyzed considering pulse width modulation (PWM) of inverter. Input voltage of BLDC motor due to PWM is calculated considering duty ratio and carrier frequency of inverter in order to control torque or speed of BLDC motor. For the calculation of core loss, the input current with harmonics due to PWM voltage is calculated by using equivalent circuit model of BLDC motor according to switching pattern and carrier frequency. Next, core loss is analyzed by inputting the currents as a source of BLDC motor for FEM. Characteristics including core loss are compared with ones without PWM waveform according to reference speed.