• Title/Summary/Keyword: Current vector field

Search Result 173, Processing Time 0.027 seconds

Rotor flux Observer Using Robust Support Vector Regression for Field Oriented Induction Mmotor Drives (유도전동기 벡터제어를 위한 Support Vector Regression을 이용한 회전자자속 추정기)

  • Han Dong Chang;Back Woon Jae;Kim Sung Rag;Kim Han Kil;Lee Suk Gyu;Park Jung IL
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-78
    • /
    • 2005
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector regression(SVR) is presented. Two well-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. Training of SVR which the theory of the SVR algorithm leads to a quadratic programming(QP) problem. The proposed SVR rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of proposed algorithm are throughly verified through numerical simulation.

Scheme of Vector Drive System for Induction Motor without Speed Sensor (유도전동기 센서리스 벡터구동 시스템의 구현)

  • 손의식;홍순일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.68-73
    • /
    • 2003
  • This paper describes a newly developed vector drive system without the speed sensor using theory of a flus observer and based on the field oriented vector control. The new method of speed estimation is presented to operate with the position and magnitude of the secondary flux vector which obtain to the observer md detected current. As the speed of estimation is determined to the flux and the motor constants, this method don't need to adjust the gain of the parameter and is operated simply. On basic the derived theory for vector control, sensorless speed control system for induction motor drive is design and realized. It is determined a controllers gain and observer gain by simulation and the experiment of sensorless vector drive is realized.

Sensorless Vector Control for Maximum Torque of SynRM in the Field Weakening Region (약계자 영역에서 SynRM의 최대 토크제어를 위한 센서리스 벡터제어)

  • Lee, Jung-Chul;Chung, Dong-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.32-38
    • /
    • 2002
  • In this paper, a new approach for the SynRM(Synchronous Reluctance Motor) control which ensures producing MTPA(Maximum Torque per Ampere) over the entire field weakening region is presented. In addition, this paper presents a speed sensorless control scheme of SynRM using flux observer. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The validity of the proposed scheme is verified through simulation.

Fabrication of a Circular Coil for the Study on the Magnetic Field Tolerance of TMP

  • Baik, Kyungmin;Cheung, Wan-Sup;Lim, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.153-153
    • /
    • 2013
  • Turbomolecular pump (TMP) is widely used to obtain and maintain high vacuum by spinning turbine rotors to migrate gas molecules to the exhaust of the pump. However, performance of the TMP has not been well observed when it is influenced by strong magnetic field. Such study may give useful information about magnetic field tolerance of TMP, development of magnetic shielding technique for key components of TMP, etc. For this purpose, magnetic field induced by a circular current source was firstly designed and investigated. Using spherical coordinates and vector potential, magnetic field throughout the space including axis of rotation was calculated. Due to the rotational symmetry of the circular current source, induced magnetic field is azimuthally symmetric and, thus, is analyzed by radial and polar components of the magnetic fields. In order to enhance the numerical accuracy for the calculation, magnetic field was expressed by complete elliptic integrals of first and second kinds. According to the calculation, when 1 A of DC-current passes through a 1 turned circular wire with 50 cm of diameter, overall magnitude of the inducedmagnetic field was about 0.02 Gauss, which was used to the determination of the current and the number of turns of wires to fabricate the coil for the study on the magnetic field tolerance of TMP.

  • PDF

A Comparative Analysis of the Indirect Field-Oriented Control with a Scalar Method for IM Speed Control (벡터제어와 스칼라제어에 의한 유도전동기의 속도제어성능 비교)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.91-98
    • /
    • 1995
  • To control speed or torque of induction motors, scalar control method that regulates the value of stator current had been used conventionally. But, vector control method which contrls the direction and the value of stator current at the same time has been introduced lately and employed widely. This paper describes comparative analyses of above two methods by computer simulation. As a result of the simulation, both methods showed good responses for high speed, but, vector control method characterized much better performance for low speed and sinusoidal input.

  • PDF

A Motion-Adaptive De-interlacing Method using Temporal and Spatial Domain Information (시공간 정보를 이용한 움직임 기반의 De-interlacing 기법)

  • 심세훈;김용하;정제창
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.9-12
    • /
    • 2002
  • In this Paper, we propose an efficient de-interlacing algorithm using temporal and spatial domain information. In the proposed scheme, motion estimation is performed same parity fields, i.e., if current field is even field, reference fields are previous even field and forward even field. And then motion vector refinement is performed to improve the accuracy of motion vectors. In the interpolating step, we use median filter to reduce the interpolation error caused by incorrect motion vector. Simulations conducted for various video sequences have shown the efficiency of the proposed interpolator with significant improvement over previous methods in terms of both PSNR and perceived image quality.

  • PDF

AN EFFICIENCY OPTIMIZED OPERATION OF INDUCTION MOTOR DRIVE SYSTEMS FOR ELECTRIC VEHICLES

  • Park, Uk-Don;Lee, Jae-Moon;Kim, Dong-Hee;Lee, Dal-Hae
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.938-943
    • /
    • 1998
  • The induction motor of the electric vehicles is controlled based on the vector control method to obtain good torque control characteristics. In the conventional vector control system, the field exciting current should be kept on a constant value to keep a stable flux level. This method has a liability that core loss becomes increasing at the light load region. To solve this liability, the efficiency maximizing control method of the vector controlled induction motor is proposed in thid paper. We developed light weight water cooled 60kW induction motor drive system which adopts our method and fabricated a conversion electric car for actual vehicle test. We demonstrate the usefulness of drive system by comparing its driving mode with conventional field oriented system and an efficiency maximizing controlled induction motor.

  • PDF

Dynamic Performance Analysis for Different Vector-Controlled CSI- Fed Induction Motor Drives

  • Mark, Arul Prasanna;Irudayaraj, Gerald Christopher Raj;Vairamani, Rajasekaran;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.989-999
    • /
    • 2014
  • High-performance Current Source Inverter (CSI)-fed, variable speed alternating current drives are prepared for various industrial applications. CSI-fed Induction Motor (IM) drives are managed by using different control methods. Noteworthy methods include scalar Control (V/f), Input-Output Linearization (IOL) control, Field-Oriented Control (FOC), and Direct Torque Control (DTC). The objective of this work is to compare the dynamic performance of the aforementioned drive control methods for CSI-fed IM drives. The dynamic performance results of the proposed drives are individually analyzed through sensitivity tests. The tests selected for the comparison are step changes in the reference speed and torque of the motor drive. The operation and performance of different vector control methods are verified through simulations with MATLAB/Simulink and experimental results.

Investigations on the Induced Magnetic Fields in High Speed Train due to the Current in the High Speed Railroad Catenary Wire (고속철도의 가선전류에 의한 고속열차내의 자기장 유도에 대한 연구)

  • Han, In-Su;Lee, Tae-Hyung;Park, Choon-Soo;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.36-40
    • /
    • 2010
  • In recent society, the electricity is so essential for the human lives. Lots of modern people take many cultural benefits owing to the development of the power systems, the cell phone, the electrical appliances, and etc. However, the problems related to the electromagnetic field generate as the side effects. Examples are the fault in the electric machinery due to the electromagnetic coupling, the fault in the communication devices due to the electromagnetic field around the power line equipments, and the effect upon the human beings due to the electromagnetic field, and etc. In this paper, we induce the vector equation about the magnetic field based on Biot-Savart law. We calculate the magnetic field at the surface of the high speed train with this induced equation and the current in the high speed railroad catenary wire. Finally, we calculate the magnetic field in the high speed train considering the material property like the permeability, the conductivity, and so on.

  • PDF

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.