• Title/Summary/Keyword: Current transport mechanism

Search Result 109, Processing Time 0.034 seconds

AC Loss Characteristics of Multifilamentary HTS Tapes

  • Amemiya, Naoyuki
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.69-72
    • /
    • 2000
  • AC losses in multifilamentary HTS tapes can be classified to hysteresis loss, coupling loss, and eddy current loss from the viewpoint of their generation mechanism. From the viewpoint of the major magnetic field component generating them, they can be classified to magnetization loss, transport loss, and total loss. Dividing superconductor to fine filaments, twisting filaments bundle and increasing transverse resistivity are effectively reduce magnetization loss and total loss when the external magnetic field is relatively large. Recently, twisted multifilamentary Bi 2223 tapes with pure silver matrix were fabricated and the reduction of magnetization loss was proved experimentally in the parallel magnetic field to the tape wide face. However, when the perpendicular magnetic field is applied, increasing transverse resistivity is required essentially to reduce the AC losses. The transverse resistivity was increased successfully by the introduction of resistive barrier between filaments.

  • PDF

Electrochemical model for the simulation of solid oxide fuel cells (고체산화물연료전지의 시뮬레이션을 위한 전기화학모델)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-66
    • /
    • 2008
  • This study presents 0-dimensional model for solid oxide fuel cells(SOFCs). The physics of the cell and the simplifying assumptions are presented, and only hydrogen participates in the electrochemical reaction. The electrical potential is predicted using this model. The Butler-Volmer equation is used to describe the activation polarization and the exchange current density is changed according to the partial pressure of reactants and the temperature. The electrical conductivities of electrodes and an electrolyte are calculated for the ohmic polarization. Material characteristics and temperature affect those factors. Analysis of concentration polarization based on transport of gaseous species through porous electrodes is incorporated in this model. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results and numerical results by other researchers.

  • PDF

Apoplastic Phloem Loading of Photoassimilate (광합성산물의 아포플라스트 체관부적재 기작)

  • Kim, Song-Mun;Hur, Jang-Hyun;Han, Dae-Sung
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.345-361
    • /
    • 1997
  • Photoassimilates translocate from regions of carbohydrate synthensis(source) to regions of carbohydrate utilization or storage(sink). In the source, assimilate loads into the phloem for long-distance transport. Current evidence suggests that there are twig loading mechanisms : one involves assimilate transfer via the apoplasm and then load into the phloem by carrier-mediated proton-sucrose cotransport, while the other involves movement through the continuous symplastic connections between the mesophyll cells and the phloem. Inspite of problems associated with the interpretation of experiments, the evidence for apoplastic loading remains convincing because the apoplastic loading systems explains well the observed accumulation capacity arid the selectivity of assimilate uptake by tile phloem.

  • PDF

Carbonaceous Materials as Anode Materials for Lithium Ion Secondary Batteries

  • Lee, Seung-Bok;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.187-195
    • /
    • 2003
  • The present article is concerned with the overview of carbonaceous materials used as anode materials for lithium ion secondary batteries. This article first classified carbonaceous materials into graphite, soft carbon and hard carbon according to their crystal structures, and then summarised the previous works on the characteristics of lithium intercalation/deintercalation into/from the carbonaceous materials. Finally this article reviewed our recent research works on the mechanism of lithium transport through graphite, soft carbon and hard carbon electrodes from the kinetic view point by the analysis of the theoretical and experimental potentiostatic current transients.

A Study on the Transference Mechanism of Charge carriers within the Devices (소자 내부에서 전하 운송체의 이동 메카니즘에 관한 연구)

  • Shim, Hye-Yeon;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.508-509
    • /
    • 2005
  • In case of ITO/MEH-PPV/Al structure, the quantity of charge carriers flowing through the organic material was few and the density of them is fixed. The electric field inside of the device almost didn't change with the position. On the other hands, in case of Au/MEH-PPV/Au structure, the hole density increased rapidly nearby the anode but decreased nearby the cathode. The space charge phenomenon followed sufficient hole injection resulted in the change of the electric field with the position inside of the device. We verified that the result of the current-voltage simulation corresponded with experimental result.

  • PDF

A Study of Siltation in a Small Harbor (소규모 항만의 퇴사기구에 관한 연구)

  • Yoon, Seong-Jin;Kim, Kyu-Han
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.961-968
    • /
    • 2006
  • Since a small harbor is often located near surf zone areas which have great influences of sediment transport, there is a great possibility that the sediment will be deposited inside of the harbor. The sediment transport occurring around the harbor entrance can't be explained by the wind wave and wave induced current. In this study, it was investigated the mechanism of the entrainment of sediment into a small harbor with permeable breakwater using hydraulic experiments in 3D wave basin. It is found out that the significant sediment entrainment produced when the mode of oscillation in the harbor became the 1st mode. In the case where the incident wave period was shorter than the period that caused higher mode oscillation in harbor, only a little amount of sediment entrainment took place. The vortex shedding from the top of secondary breakwater played very important roll in the entrainment of sediment into the harbor. It is also found that the small jetty attached at the top of secondary breakwater could effectively prevent the entrainment of sediment into the harbor.

CBP-Mediated Acetylation of Importin α Mediates Calcium-Dependent Nucleocytoplasmic Transport of Selective Proteins in Drosophila Neurons

  • Cho, Jae Ho;Jo, Min Gu;Kim, Eun Seon;Lee, Na Yoon;Kim, Soon Ha;Chung, Chang Geon;Park, Jeong Hyang;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.855-867
    • /
    • 2022
  • For proper function of proteins, their subcellular localization needs to be monitored and regulated in response to the changes in cellular demands. In this regard, dysregulation in the nucleocytoplasmic transport (NCT) of proteins is closely associated with the pathogenesis of various neurodegenerative diseases. However, it remains unclear whether there exists an intrinsic regulatory pathway(s) that controls NCT of proteins either in a commonly shared manner or in a target-selectively different manner. To dissect between these possibilities, in the current study, we investigated the molecular mechanism regulating NCT of truncated ataxin-3 (ATXN3) proteins of which genetic mutation leads to a type of polyglutamine (polyQ) diseases, in comparison with that of TDP-43. In Drosophila dendritic arborization (da) neurons, we observed dynamic changes in the subcellular localization of truncated ATXN3 proteins between the nucleus and the cytosol during development. Moreover, ectopic neuronal toxicity was induced by truncated ATXN3 proteins upon their nuclear accumulation. Consistent with a previous study showing intracellular calcium-dependent NCT of TDP-43, NCT of ATXN3 was also regulated by intracellular calcium level and involves Importin α3 (Imp α3). Interestingly, NCT of ATXN3, but not TDP-43, was primarily mediated by CBP. We further showed that acetyltransferase activity of CBP is important for NCT of ATXN3, which may acetylate Imp α3 to regulate NCT of ATXN3. These findings demonstrate that CBP-dependent acetylation of Imp α3 is crucial for intracellular calcium-dependent NCT of ATXN3 proteins, different from that of TDP-43, in Drosophila neurons.

Superconducting properties of SiC-buffered-MgB2 tapes

  • Putri, W.B.K.;Kang, B.;Duong, P.V.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.1-4
    • /
    • 2015
  • Production of $MgB_2$ film on metallic Hastelloy with SiC as the buffer layer was achieved by means of hybrid physical-chemical vapor deposition technique, whereas SiC buffer layers with varied thickness of 170 and 250 nm were fabricated inside a pulsed laser deposition chamber. Superconducting transition temperature and critical current density were verified by transport and magnetic measurement, respectively. With SiC buffer layer, the reduced delaminated area at the interface of $MgB_2$-Hastelloy and the slightly increased $T_c$ of $MgB_2$ tapes were clearly noticed. It was found that the upper critical field, the irreversibility field and the critical current density were reduced when $MgB_2$ tapes were buffered with SiC buffer layer. Clarifying the mechanism of SiC buffer layer in $MgB_2$ tape in affecting the superconducting properties is considerably important for practical applications.

Analysis of Submicron Gate GaAs MESFET's Characteristics Using Particle Model (입자모델을 이용한 서브마이크론 게이트 GaAs MESFET 특성의 해석)

  • 문승환;정학기;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.534-540
    • /
    • 1990
  • In this paper the characteristics of submicron gate GaAs MESFET's have been studied using a particle model which takes into account the hot-electron transport phenomena, i.e., the velocity overshoot. \ulcornervalley(<000> direction), L valley (<111>direction), X valley (<100>direction) as the GaAs conduction energy band and optical phonon, acoustic phonon, equivalent intervalley, nonequivalent intervalley scattering as the scattering models, have been considered in this simulation. And the GaAs material and the device simulation have been done by determination of the free flight time, scattering mechanism and scattering angle according to Monte-Carlo algorithm which makes use of a particle model. As a result of the particle simulation, firstly the electron distribution, the potential energy distribution and the situation of electron displacement in 0.6 \ulcorner gate length device have been obtained. Secondly, the cutoff frequency, obtained by this method, is k47GHz which is in good agreement with the calculated result of theory. And the current-voltage characteristics curve which takes account of the buffer layer effect has been obtained. Lastly it has been verified that parasitic current at the buffer layer can be analyzed using channel depth modulation.

  • PDF

A Study of the Electrical Characteristics of WOx Material for Non-Volatile Resistive Random Access Memory (비-휘발성 저항 변화 메모리 응용을 위한 WOx 물질의 전기적 특성 연구)

  • Jung, Kyun Ho;Kim, Kyong Min;Song, Seung Gon;Park, Yun Sun;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.268-273
    • /
    • 2016
  • In this study, we observed current-voltage characteristics of the MIM (metal-insulator-metal) structure. The $WO_x$ material was used between metal electrodes as the oxide insulator. The structure of the $Al/WO_x/TiN$ shows bipolar resistive switching and the operating direction of the resistive switching is clockwise, which means set at negative voltage and reset at positive voltage. The set process from HRS (high resistance state) to LRS (low resistance state) occurred at -2.6V. The reset process from LRS to HRS occurred at 2.78V. The on/off current ratio was about 10 and resistive switching was performed for 5 cycles in the endurance characteristics. With consecutive switching cycles, the stable $V_{set}$ and $V_{reset}$ were observed. The electrical transport mechanism of the device was based on the migration of oxygen ions and the current-voltage curve is following (Ohm's Law ${\rightarrow}$ Trap-Controlled Space Charge Limited Current ${\rightarrow}$ Ohm's Law) process in the positive voltage region.