• Title/Summary/Keyword: Current stress field

Search Result 260, Processing Time 0.027 seconds

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

The Effect of Compressing ER Electrode on Electrorheological Properties of Anhydrous ER Fluids (ER 유체용 압축전극이 ER 유체의 전기유변학적 특성에 미치는 영향)

  • Ahn, Byeng-Gil
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • For increasing the yield stress of ER fluids, the compressing ER electrode was developed and the compressing electrorheological (ER) behavior of anhydrous ER fluids in silicone oil of phosphorous ester cellulose powder was investigated. Under constant electric field, not only the current density but also the yield stress of anhydrous ER fluids were studied as varying the compressing length of ER electrode distance. From the experimental results the compressing of ER electrode had a large influence to the ER properties of anhydrous ER fluids. The current density was proportional to the compressing length of ER electrode under constant electric field and volume fraction also tile compressing yield stress was proportional to the volume fraction of dispersed particles under constant electric field and compressing length. When the ER electrode was compressed with 150mm after charging the electric field, 4 kV, tile yield stress of phosphoric ester cellulose ER fluids increased to thirteen times comparing with the yield stress measured at normal electrode.

The Effect of Compressing ER Electrode on the Electrorheological Properties of ER Fluids (ER 유체용 압축전극이 ER 유체의 전기유변학적 특성에 미치는 영향)

  • 안병길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.138-145
    • /
    • 2001
  • For increasing the yield stress of ER fluids, the compressing ER electrode was developed and the compressing electrorheological (ER) behavior of anhydrous ER fluids in silicone oil of phosphorous ester cellulose powder was investigated. Under constant electric field, not only the current density but also the yield stress of anhydrous ER fluids were studied as varying the compressing length of compressing ER electrode. From the experimental results, the compressing of ER electrode had a large influence to the ER properties of anhydrous ER fluids. The current density was proportional to the compressing length of ER electrode under constant electric field and volume fraction also the compressing yield stress was proportional to the volume fraction of dispersed particles under constant electric field and compressing length. When the ER electrode was compressed with 150mm after charging the electric field, 4 kV, the yield stress of phosphoric ester cellulose ER fluids increased to thirteen times comparing with the yield stress measured at normal electrode.

  • PDF

Characteristics of Trap in the Thin Silicon Oxides with Nano Structure

  • Kang, C.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.32-37
    • /
    • 2003
  • In this paper, the trap characteristics of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4nm and 814nm, which have the gate area 10$\^$-3/ $\textrm{cm}^2$. The stress induced leakage currents will affect data retention, and the stress current and transient current is used to estimate to fundamental limitations on oxide thicknesses.

A modified couple-stress magneto-thermoelastic solid with microtemperatures and gravity field

  • Samia M. Said;Elsayed M. Abd-Elaziz;Mohamed I.A. Othman
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.475-485
    • /
    • 2023
  • The present study deals with wave propagation in a modified couple-stress generalized thermoelastic solid under the effect of gravity and magnetic field. The problem is solved by a refined microtemperatures multi-phase-lags thermoelastic theory. The Fourier series and Laplace transforms will be used to obtain the general solution for any set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the gravity field, the magnetic field, and different theories of thermoelasticity in the presence of the hall current effect on all the physical quantities. Some particular cases of special interest have been deduced from the present investigation.

Correlation Analysis between Job Stress and Job Satisfaction of Building Construction Field Managers

  • An, Sung-Hoon;Zhang, Zhen;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.474-481
    • /
    • 2013
  • The success of a construction project hinges on the effective and efficient management of human resources. The stress of human resources is directly related with work performance, and as such, should be managed to improve work performance. This study examined the correlation between job stress and job satisfaction among building construction project managers. A questionnaire to measure work performance was created by referring to the Korean Occupational Stress Questionnaire Short Form developed by the Korean Occupational Safety & Health Agency, as well as a previous study. The mean job satisfaction score of field managers was 3.6, which suggests that they are generally satisfied in their current job environment. A Pearson's correlation analysis showed that the field managers that were satisfied with their job had less job stress. These results could be used for the effective management of construction site managers and to improve their job performance in the field.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

Analysis of In-Situ Stress Regime from Hydraulic Fracturing Field Measurements in Korea (수압파쇄 현장시험을 통한 국내 지반의 초기응력 분포양상 해석)

  • Choi, Sung-Oong
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.111-116
    • /
    • 2008
  • Since the hydraulic fracturing field testing method was introduced first to Korean geotechnical engineers in 1994, there have been lots of progresses in a hardware system as well as an interpretation tool. The hydrofracturing system of first generation was the pipe-line type, and it has been developed to a wire-line system at their second generation. The current up-to-date system is more compact and is able to be operated by all-in-one system. With a progress in a hardware system, the software for analyzing in-situ stress regime has also been progressed. The shut-in pressure, which is the most ambiguous parameter to be obtained from hydrofracturing pressure curves, can now be acquired automatically from the various methods. While the hardware and software for hydrofracturing tests are being developed during the last decade, the author could accumulate the field test results which can cover the almost whole area of South Korea. Currently these field data are used widely in a feasibility study or a preliminary design step for tunnel construction in Korea. Regarding the difficulties in a site selection and a test performance for the in-situ stress measurement at an off-shore area, the in-situ stress regime obtained from the field experiences in the land area can be used indirectly for the design of a sub-sea tunnel. From the hydrofracturing stress measurements, the trend of magnitude and direction of in-situ stress field was shown identically with the geological information in Korea.

  • PDF

Study on the Critical Current of Field Coil for High Temperature Superconducting Motor (고온초전도 전동기용 계자코일의 임계전류 연구)

  • Jo, Young-Sik;Sohn, Myung-Whan;Baik, Seung-Kyu;Kwon, Woon-Sik;Lee, Eon-Yong;Kwon, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.873-875
    • /
    • 2003
  • It is well known that $I_c$ (critical current) in HTS tape is more sensitive to $B{\perp}$ (magnetic field amplitude applied perpendicular to the tape surface) than to B// (magnetic field amplitude applied parallel to the tape surface). Thus, the magnitude of $B{\perp}$ at HTS tape is important to the design of HTS motor, because it determines the operating current. In addition, the $I_c$ of HTS field coil is determined by not only the $B{\perp}$ but also stress and strain condition at given operating temperature. Therefore, at the stage of field coil design, stress and strain conditions should be considered because when the HTS tape is handled, it is necessary to know the limiting values of loading, bending and twisting to avoid any damages. The $I_c$ of field coil is calculated by 3D analysis and measured through experiments considering the $B{\perp}$ and the margin of contacts loss.

  • PDF