• 제목/요약/키워드: Current sharing controller

검색결과 55건 처리시간 0.02초

CAN통신을 이용한 모듈전원의 병렬운전에 관한 연구 (A Study of Parallel Operation of Module Power using CAN Communication)

  • 박성미;이상혁;박성준;이배호
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3603-3609
    • /
    • 2011
  • 본 논문에서는 CAN(Controller Area Network) 통신을 이용한 균등한 전류 분배를 위한 새로운 부하분담(Load-sharing) 알고리즘(Algorithm)을 제안한다. 기존 아날로그 방식과는 달리 디지털 통신을 이용한 강인한 부하분담특성을 가지며, 모듈마다 독립된 제어기(전압제어기, 전류제어기)가 구성되어 있으며, 마스터(Master)의 지령치 모듈의 지령치에 따라 슬레이브(slave)모듈이 부하분담을 수행한다. 또한 각 모듈 상태를 파악하기 위해 별도의 제어선을 사용하여 모듈의 고장 상태 및 고장난 모듈의 위치를 정확히 파악함으로써, 효율적이고 고속의 부하분담을 구현하였다. 제작된 병렬 시스템은 각 모듈마다 독립된 제어기가 구성되어 있으며, 본 논문에서는 PSIM을 통한 시뮬레이션과 시작품 제작을 통해 제안된 알고리즘의 타당성을 검증하였다.

정지형 UPS의 병렬운전 제어 (The Parallel Operation Control of Static UPSs)

  • 민병권;원충윤
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Design of Dual-channel Interleaved Phase-shift Full-bridge Converter

  • Che, Yanbo;Wang, Dianmeng;Liu, Xiaokun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1529-1536
    • /
    • 2017
  • A digital dual-channel interleaved phase-shift full-bridge converter is investigated in this paper, and its topology and principle are analyzed. To realize current sharing and stabilize the output voltage, a controller with current sharing loop and closed voltage loop is employed. In addition, current sharing will increase the output current fluctuation and a new digital interleaved driving technology is proposed to reduce the output current ripple. To verify the analysis, simulation and experiments are carried out, which shows the effectiveness of the proposed control strategies.

양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구 (A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid)

  • 윤혁진;김명호;백주원;김주용;김희제
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Analyzing and Designing a Current Controller for Circulating Current Reduction in Parallel Three-Phase Voltage-Source Inverters

  • Kim, Kiryong;Shin, Dongsul;Kim, Hee-Je;Lee, Jong-Pil
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.502-510
    • /
    • 2018
  • A circulating current is a major problem caused by directly connecting voltage-source inverters (VSIs) in parallel. This circulating current occurs as a zero-sequence current between the inverters by specific switch states. Several studies have presented alternatives using hardware and software methods. When coupled inductors (CIs) are employed for the high-frequency circulating current, a controller is required to prevent the low-frequency circulating current from saturating the CIs. In this study, the zero-sequence circulating current and its alternatives are investigated using hardware and mathematical description. A high-performance circulating current controller is proposed by applying a repetitive controller to the zero-sequence current control loop. The proposed controller can effectively minimize the low-frequency circulating current without any data sharing between the inverters in unfavorable conditions. It can also be applicable to the modular configuration of parallel three-phase VSIs. Experimental results verify the performance of the proposed controller.

3[kw]급 태양전지 가상구현시스템의 병렬운전 (Parallel operation of VISC system for 3[kw] solar cell)

  • 이상용;정병환;오방원;이병인;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.957-960
    • /
    • 2003
  • Many solar cell way need to be connected by series or parallel to extract the high power Especially, during parallel operation to reduce circulation current the individual converter has to share and control the load current. Generally, Current Sharing(CS) can be implemented using droop and active current sharing method. In this paper, one 3[KW] PWM converter was replaced as one 3[KW] solar cell array(3 parallels, each parallel has twenty single modules), two 3[KW] solar cell way Is Paralleled to generate 6[KW] power. Also each converter used voltage-current controller and Automatic MSCPM(Master-Slave Current-programming Method) for current sharing(AS).

  • PDF

Low-Voltage and High-Current DC Output Realized by Multiple Power Cells Based on Deadbeat and Automatic Current Sharing Control

  • Liu, Jinfeng;Zhang, Yu;Wang, Xudong;IU, Herbert Ho-Ching
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1575-1585
    • /
    • 2017
  • This paper presents a synchronous generator with a distributed system of multiple parallel three-phase power cells. This generator can immediately output high DC. Each power cell comprises three-phase windings and a three-phase synchronous rectification bridge with a deadbeat control of load power feedforward, which can improve the characteristics of dynamic response and reflect the load variance in real time. Furthermore, each power cell works well independently and modularly using the method of automatic maximum current sharing. The simulation and experimental results for the distributed controller of multiple power cells demonstrate that the deadbeat control method can respond quickly and optimize the quality of the energy. Meanwhile, automatic maximum current sharing can realize the validity of current sharing among power cells.

디지털 병렬 통신을 이용한 부하분담 알고리즘 (Load-Sharing Algorithm using Digital Parallel Communication)

  • 박성미;김춘성;이상혁;이상훈;박성준;이배호
    • 전력전자학회논문지
    • /
    • 제16권1호
    • /
    • pp.50-57
    • /
    • 2011
  • 본 논문에서는 마이컴(ATmega-2560) 기반의 디지털 통신 방식을 이용한 새로운 부하분담(Load-sharing) 알고리즘(Algorithm)을 제안한다. 기존의 아날로그 방식과 달리 고속 통신과 디지털 제어를 수행하고 실시간 제어를 위한 시분할 토큰버스 방식을 적용함으로서 효율적인 부하분담 및 리던던시(Redundancy)를 구현하였다. 또한 자동 ID 설정 알고리즘을 적용함으로서 시스템 비용을 낮추었으며, 제어기의 전압 및 전류 적분값을 공유하는 새로운 알고리즘으로 시스템의 속응성을 향상시켰다. 제작된 병렬 시스템은 각 모듈마다 독립된 제어기가 구성되어 있으며, 마스터(Master) 모듈의 지령치에 따라 슬레이브(Slave) 모듈이 부하분담을 수행한다. 본 논문에서는 PSIM을 통한 시뮬레이션과 시작품 제작을 통해 제안된 알고리즘의 타당성을 검증하였다.

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.