• Title/Summary/Keyword: Current shape

Search Result 1,876, Processing Time 0.031 seconds

Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail (중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계)

  • Park, J.H.;Lee, K.H.;Kim, S.M.;Kim, H.J.;Kim, S.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

Comparison and Analysis of round shape core of transformer (권철심형 원형단면 코어의 비교 분석)

  • Sim, Min-Suk;Kong, Jeoung-Sik;Kim, Chul-Ho;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1024-1026
    • /
    • 2003
  • This paper deals with the characteristic analysis of round shape core of transformer compared with conventional EI core transformer. The round shape has specific configuration to reduce leakage magnetic flux. Characteristics such as B-H characteristic curve and in-rush current, etc. are compared.

  • PDF

자기공명 영상촬영을 위한 임의로 선택된 모양의 최소인덕턴스 경사자계코일의 설계 (Minimum-Inductance MRI Gradient Coil Design with Arbitrarily-Selected Shape)

  • Lee, J.K.;Yang, Y.J.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.85-87
    • /
    • 1994
  • This paper proposes a new inductance minimization scheme for a gradient system of arbitrarily selected shape. Although it is important to minimize the gradient coil inductance to reduce the current switching time, such minimization has been possible only for cylindrical or parallel biplanar coils. By using small current loops on arbitrarily selected surface as optimization elements, the inductance of the whole circuit can be minimized using the loop's self- and mutual-inductances. Wire positions can be easily derived from the loop current distribution. Preliminary studies for the design of x-directional surface gradient coil show the utility of tile proposed gradient coil design scheme.

  • PDF

A Study on the Process Condition of Electropolishing for Stamping Leadframe (스탬핑 리드프레임의 전해 연마 가공조건에 관한 연구)

  • 신영의;김경섭;김헌의;류기원;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.983-988
    • /
    • 2000
  • The leadframe of thin plate fabricated by stamping method generates a lot of burr and stress in the processing surface because of the mold. The electropolishing equipment was produced in order to increase accuracy and surface roughness for 42%Ni-Fe leadframe. An electrolyte consisted of phosphoric acid, ethylene glycol and deionized water. Experiments were accomplished as polishing conditions were changed such as current density, polishing time, electrode gap and sample shape. The burr from the cutting was eliminated and surface characteristics of high flatness and high luster wre obtained after electropolishing. In addition, the electroplishing had good characteristic in 1.0 A current density and 4㎜ of electrode spaces, and it was affected by the composition of electrolyte and the sample shape.

  • PDF

A Study on Electric Properties of Epoxy Resin on Filler Shape (충전제 형상이 미치는 에폭시 수지의 전기적 특성에 관한 연구)

  • 이성일
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The epoxy resin materials used in outdoor high voltage equipments are required to have the high electric performance because of the miniaturization. The frequence dependence of the permittivity and the loss tangent have important information. In this paper we describe the frequency dependence of the permittivity and the loss tangent for epoxy resin filled with silica and the influence of filler shapes on the dielectric properties. The increment of tan $\delta$ in the low frequency region is caused by the increment of both the electrical conductivity and the polarization due to the shape of filler and the water absorbed in and near the interface between fillers and resins. The result of charge current and discharge measure, electric conduction is increased according to voltage.

  • PDF

A Study on the Flat-Type Induction Heating of Steel Plate (강판표면의 유도가열에 관한 연구)

  • Yun, Jin-Oh;Yang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.948-954
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction and induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape and other process variables for maximum angular deformation were proposed.

A Study on the Breaking Phenomena Varying with Notch Shape of Fuse-Element (휴즈 엘리먼트 노치 형태에 따른 차단특성에 관한 연구)

  • Lee, B.S.;Lee, S.H.;Lee, J.C.;Bark, G.B.;Han, S.O.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1382-1384
    • /
    • 1994
  • Description is given of the effect of fuse-element notch shape on interruption parameters. The notch of fuse-elements have all the same area. Tests were carried out at direct current and carried out the effect of the fuse element construction on the process of interrupting short circuit and overload current. The arcing phenomenon in a low voltage fuse operation in case of high current value of short circuit is analyzed.

  • PDF

냉음극을 이용한 plasma전자 beam의 전기적 입력특성 II

  • 전춘생;김상현;이보호
    • 전기의세계
    • /
    • v.27 no.6
    • /
    • pp.49-53
    • /
    • 1978
  • This paper investigates on the electric input characterisitcs of plasma electron beam in H$_{2}$ gas chamber with various pressures, effected by the shape and dimension of hollow screen cathode during electron beam is formed. The result are as follows: (1)Electron beam is formed in the region of positive resistance on the characteristic curve which shows the relation between the voltage and current of electron beam, independent of the shape and dimension of hollow screen cathode. (2)At a given electron beam current, electron beam voltage increases with the decreases of hollow screen cathode length and screen mesh number of it. (3)At a given electron beam current, electron beam voltage increases with the diameters of hollow screen cathode and electron beam hole of it.

  • PDF

Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines (200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계)

  • Seo, JiHye;Yi, Jin-Hak;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.