• 제목/요약/키워드: Current sensors

검색결과 1,264건 처리시간 0.03초

전류 센서만을 이용한 유도 전동기의 파라미터 추정 (A Parameter Identification Method for Inverter-Fed Induction Motor Drives Only Using Current Sensors)

  • 이교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.177-180
    • /
    • 2000
  • The accurate values of parameters of an induction motor are required for its high performance control. So far many methods using current sensors voltage sensors and speed sensor have been developed. This paper proposes an identification method of parameters of induction motor only using current sensors.

  • PDF

DC링크 전류센서를 이용한 삼상전류 측정 방식에서 최소 스위칭 시간의 단축 (Reduction of Minimum Switching Duration in the Measurement of Three Phase Current with DC-Link Current Sensor)

  • 김경서
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권12호
    • /
    • pp.649-654
    • /
    • 2003
  • The simplest method for measuring output currents of the three phase inverters is to measure them with three current sensors such as hall sensors. This method requires at least two current sensors, and these types of sensors are somewhat expensive. More economical method is measuring DC link current with a simple shunt resistor, then, reconstructing output current using the DC link current value and the switching status. However, in low speed region, the measurement becomes difficult and even impossible due to the requirement of minimum switching duration for A/D conversion. These problems can be overcome by limitation of switching duration. Limitation of switching, however, causes voltage and current distortion. Owing to compensation, distortion can be effectively suppressed. However these increase acoustic noise due to increment of current ripple. In this paper, a current measurement method is proposed, which can reduce minimum switching duration resulting in reduction of acoustic noise. The validity of proposed method is confirmed through experiment.

비교 시험에 따른 대전류 측정 센서 교정 결과 분석 (A calibration of high current measuring sensors by comparison tests)

  • 한종훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.312-313
    • /
    • 2015
  • For the traceability of high current measuring sensors of high power testing department II(HPTD II) in Korea Electrotechnology Research Institute(KERI), additional comparison tests with reference test object were performed repeatedly. The first intercomparison has been carried out between the reference shunt for Asia and high current shunt of HPTD II in 2013. This paper compares the test results of the calibration in 2014 with them in 2015. The assigned new scale factor of high current sensors will be applied to high power tests in HPTD II until the next high current intercomparison.

  • PDF

실험계획법을 이용한 퍼멀로이 전류 코어 센서의 출력특성에 관한 열처리 공정조건 분석 (Analysis of Heat Treatment Process Conditions for Output Characteristics of Permalloy Core on Current Sensors using DOE)

  • 김영신;김윤상;전의식
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.16-23
    • /
    • 2020
  • An electric vehicle operates at high currents and requires real-time monitoring of the entire system for ensuring efficiency and safety of the vehicle. Current sensors are applied to drive the motors, inverters, and battery control systems, and are the key components to ensure constant monitoring of the magnitude and waveforms of the operating current. In this study, a heat treatment process condition to influence the performance of Permalloy current sensors was developed; the correlation between the output capacity, low-temperature characteristics, and high-temperature characteristics of the current sensor was studied; and the process was optimized to meet the required output accuracy and temperature characteristics.

A review on sensors and systems in structural health monitoring: current issues and challenges

  • Hannan, Mahammad A.;Hassan, Kamrul;Jern, Ker Pin
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.509-525
    • /
    • 2018
  • Sensors and systems in Civionics technology play an important role for continuously facilitating real-time structure monitoring systems by detecting and locating damage to or degradation of structures. An advanced materials, design processes, long-term sensing ability of sensors, electromagnetic interference, sensor placement techniques, data acquisition and computation, temperature, harsh environments, and energy consumption are important issues related to sensors for structural health monitoring (SHM). This paper provides a comprehensive survey of various sensor technologies, sensor classes and sensor networks in Civionics research for existing SHM systems. The detailed classification of sensor categories, applications, networking features, ranges, sizes and energy consumptions are investigated, summarized, and tabulated along with corresponding key references. The current challenges facing typical sensors in Civionics research are illustrated with a brief discussion on the progress of SHM in future applications. The purpose of this review is to discuss all the types of sensors and systems used in SHM research to provide a sufficient background on the challenges and problems in optimizing design techniques and understanding infrastructure performance, behavior and current condition. It is observed that the most important factors determining the quality of sensors and systems and their reliability are the long-term sensing ability, data rate, types of processors, size, power consumption, operation frequency, etc. This review will hopefully lead to increased efforts toward the development of low-powered, highly efficient, high data rate, reliable sensors and systems for SHM.

A Survey of the Transmission-Power-Control Schemes in Wireless Body-Sensor Networks

  • Lee, Woosik;Kim, Heeyoul;Hong, Min;Kang, Min-Goo;Jeong, Seung Ryul;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1854-1868
    • /
    • 2018
  • A wireless body-sensor network (WBSN) refers to a network-configured environment in which sensors are placed on both the inside and outside of the human body. The sensors are much smaller and the energy is more constrained when compared to traditional wireless sensor network (WSN) environments. The critical nature of the energy-constraint issue in WBSN environments has led to numerous studies on the reduction of energy consumption of WBSN sensors. The transmission-power-control (TPC) technique adjusts the transmission-power level (TPL) of sensors in the WBSN and reduces the energy consumption that occurs during communications. To elaborate, when transmission sensors and reception sensors are placed in various parts of the human body, the transmission sensors regularly send sensor data to the reception sensors. As the reception sensors receive data from the transmission sensors, real-time measurements of the received signal-strength indication (RSSI), which is the value that indicates the channel status, are taken to determine the TPL that suits the current-channel status. This TPL information is then sent back to the transmission sensors. The transmission sensors adjust their current TPL based on the TPL that they receive from the reception sensors. The initial TPC algorithm made linear or binary adjustments using only the information of the current-channel status. However, because various data in the WBSN environment can be utilized to create a more efficient TPC algorithm, many different types of TPC algorithms that combine human movements or fuse TPC with other algorithms have emerged. This paper defines and discusses the design and development process of an efficient TPC algorithm for WBSNs. We will describe the WBSN characteristics, model, and closed-loop mechanism, followed by an examination of recent TPC studies.

일체화된 Aperture 구조의 한계전류형 산소센서의 제작 및 특성 (Fabrication and characteristics of limit-current type oxygen sensor with monolith aperture structure)

  • 오영제;이득용
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.273-280
    • /
    • 2008
  • Monolith aperture-type oxygen sensors with simple structure of YSZ(pin-hole)/Pt/ YSZ(solid electrolyte)/Pt were fabricated by co-firing technique. To enhance the yield of productivity, a couple of YSZ green sheets for diffused barrier and solid electrolyte were prepared by tape-casting and co-firing method. The limit current characteristics of the oxygen sensors were measured between 500 and $650^{\circ}C$ The heating temperature of $600^{\circ}C$ was optimum as a portable oxygen sensor in the range of oxygen concentration from 0 to 75 vol%. Linear proficiency of limit current behavior as a function of oxygen concentration was controlled by the variation of aperture dimension. The fabricated oxygen sensors showed the stable sensing output for 30 days. Gas leakage in bonding area due to warping, cracking and thermal cycling was not found in the period.

Fabrication and statistical characterization of Nb SQUID sensors for multichannel SQUID system

  • Kim, B.K.;Yu, K.K.;Kim, J.M.;Kwon, H.;Lee, S.K.;Lee, Y.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.62-66
    • /
    • 2020
  • We fabricated superconducting quantum interference devices (SQUIDs) based on Nb Josephson junctions, and characterized the key parameters of the SQUIDs. The SQUIDs are double relaxation oscillation SQUIDs (DROSs) having larger flux-to-voltage transfer coefficient than the standard DC-SQUIDs. SQUID sensors were fabricated by using Nb junction technology consisted of a DC magnetron sputtering and a conventional photolithography process. In multichannel SQUID systems for whole-head magnetoencephalography measurement with a helmet-type SQUID array, we need about 336 SQUID sensors for each system. In this paper, we fabricated a few hundred SQUID sensors, measured the critical current, flux modulation voltage and decided if each tested SQUID can be used for the multichannel systems. As the criterion for the acceptance of the sensors, we chose the critical current and amplitude of the modulation voltage to be 8 ㎂ and 80 ㎶, respectively. The average critical current of the SQUIDs was 10.58 ㎂. The typical flux noise of the SQUIDs with input coil shorted was 2 μΦ0/√Hz at white region.

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • 제12권4호
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.

울돌목 시험조류발전소 구조물 안전감시시스템 구축에 관한 연구 (Study on Building a Structural Health Monitoring System for Uldolmok Tidal Current Power Plant)

  • 이진학;박우선;박진순;이광수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.635-638
    • /
    • 2007
  • In this paper, we described the fundamental concepts of proposed structural health monitoring system for Uldolmok Tidal Current Power Plant focusing on the use of smart sensors including fiber bragg grating sensors and macro fiber composite sensors. The structural health monitoring system can play an important role to maintain the structural safety for offshore structures like as bridges and high-rise buildings. In the case of tidal current power plant, the monitoring system is much more important since the structures are usually constructed at the site with severer environmental loadings such as high current speed.

  • PDF