• 제목/요약/키워드: Current sensing accuracy

검색결과 80건 처리시간 0.027초

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로 (Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite)

  • 김대선;원명수;이양원
    • 대한원격탐사학회지
    • /
    • 제33권6_1호
    • /
    • pp.1029-1040
    • /
    • 2017
  • 산불은 다량의 온실가스를 대기 중으로 방출하는 자연재해로서, 이를 효율적으로 감시하기 위해서는 정지궤도 위성의 산불방사열에너지(fire radiative power, FRP)를 활용하는 방법이 필요하다. 본 연구에서는 2017년 5월 6일에 발생한 우리나라 삼척과 강릉 산불을 사례로, 히마와리 위성의 중적외 채널자료를 이용하여 FRP를 산출하였으며, 이를 통해 MODIS(Moderate Resolution Imaging Spectroradiometer)의 제한적인 시간해상도로는 관측이 불가능한 10분 간격의 산불 피해강도의 실시간 모니터링이 가능함을 확인하였다. 또한 히마와리 FRP를 이용하여 강릉 산불의 배출가스를 계산하였으며, 에어코리아 실측치와 비교하였을 때 거리 차에 의한 1~3시간의 지연현상과 함께, 산불배출가스의 시계열 패턴이 매우 잘 일치함을 알 수 있었다. 또한 선행연구에서 고해상도 영상분석을 통해 제시한 산불배출가스 추정량과 비교하였을 때, 100 ha당 배출량이 삼척은 약 12%, 강릉은 약 2%의 차이로 매우 유사한 결과를 나타냈다. 이는 산불 피해면적과 피해강도에 대한 직접적인 분석 없이도, 정지궤도 위성의 FRP만을 이용하여 산불배출가스의 정밀한 추정이 가능함을 의미한다. 이 연구는 향후 발사될 우리나라 정지궤도 기상위성인 GK-2A(Geostationary Korea Multi-Purpose Satellite-2A)의 산불배출가스 추정 및 에어로솔 산출에 활용될 수 있을 것으로 사료된다.

다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰 (A Review of Change Detection Techniques using Multi-temporal Synthetic Aperture Radar Images)

  • 백원경;정형섭
    • 대한원격탐사학회지
    • /
    • 제35권5_1호
    • /
    • pp.737-750
    • /
    • 2019
  • 접근 불능지역에 대한 표적의 변화 정보는 국가 안보의 측면에서 매우 중요하며 이상 징후에 조속히 대응하기 위해서는 신속하고 정확한 표적의 변화 탐지 결과 도출이 필수적이다. 위성 SAR는 기상 조건과 태양고도에 상관없이 높은 정확도의 영상을 취득할 수 있으며 최근 SAR 위성 수의 증가에 따라 동일 지역에 대하여 1일 미만의 시간 해상도로 영상획득이 가능해졌다. 이러한 장점으로 접근 불능지역에 대한 변화 탐지를 수행할 때 활용성이 크게 증대되었다. 위성 SAR에서 일반적으로 활용 가능한 정보는 강도와 위상 정보로 각각의 기술을 기반으로 변화 탐지 기술이 개발되었다. 강도기반 변화 탐지(ACD; Amplitude Change Detection), 긴밀도 기반 변화 탐지(CCD; Coherence Change Detection). 각각의 알고리즘은 정보의 특성 차이에 따라 변화탐지 기술 구현을 위한 전처리 과정이 다르고 각 알고리즘의 최종 탐지 결과물에 차이가 있다. 따라서 각각의 관측기술에 대한 학술적인 연구동향을 분석함으로써 각 변화탐지 기술의 장단점을 상호보완 할 수 있다. 본 논문의 목적은 위성 SAR 영상을 활용한 변화탐지와 관련하여 기존에 수행된 연구 문헌을 수집하고 동향을 파악하는 것이다. 이 연구는 지속적인 지표변화 탐지를 위한 필요 조건을 조사하여 향후 접근 불능지역에 대한 주기적 탐지 연구를 수행하는데 활용할 예정이다.

DeepLabV3+ 모델을 이용한 PlanetScope 영상의 해상 유출유 탐지 (Detection of Marine Oil Spills from PlanetScope Images Using DeepLabV3+ Model)

  • 강종구;윤유정;김근아;박강현;최소연;양찬수;이종혁;이양원
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1623-1631
    • /
    • 2022
  • 유출유는 해양 생태계에 큰 위협이 되므로 피해 최소화를 위해 신속한 현황정보파악이 필요하다. 위성원격탐사는 항공기에 비해 광역적 모니터링이 가능하기 때문에 시공간적 범위에서 장점을 가진다. 최근에는 딥러닝 영상인식 기술의 발전으로 인해 딥러닝을 활용한 유출유 탐지의 필요성이 대두되고 있으나, 기존의 Synthetic Aperture Radar (SAR) 영상 위주의 유출유 탐지와는 달리 고해상도 광학영상에 딥러닝 기법을 적용하는 경우는 많지 않았다. 이에, 본 연구에서는 PlanetScope 위성의 광학영상을 활용하여 유출유 레이블을 제작하고, 이를 기반으로 DeepLabV3+모델을 활용하여 유출유 탐지 모델을 구축하였으며, 암맹평가에서 정확도 0.885, 정밀도 0.888, 재현율 0.886, F1점수 0.883, 평균 교집합 대 합집합 비율(Mean Intersection over Union, mIOU) 0.793 등의 상당히 높은 정확도를 나타냈다.

기계학습 기반의 산불위험 중기예보 모델 개발 (Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning)

  • 박수민;손보경;임정호;강유진;권춘근;김성용
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.781-791
    • /
    • 2022
  • 산불로 인한 피해를 최소화하기 위해서 산불위험 예보 정보를 제공하는 것은 필수적이다. 따라서 본 연구에서는 우리나라를 대상으로 기계학습 기반의 산불위험 중기예보(1일 후부터 7일 후까지) 모델을 개발하였다. Global Data Assimilation and Prediction System (GDAPS)의 기상예보 자료와 기 개발된 산불위험지수(Fire Risk Index, FRI)의 과거 및 현재 정보, 그리고 기타 환경요소(i.e., 고도, 산불다발지수, 가뭄지수)의 현재 정보를 반영하여 모델을 개발하였다. 본 연구에서는 실시간 학습을 통해 모델을 개발하였으며, 효율적인 모델 개발을 목적으로 과거 산불위험지수와 가뭄지수의 유무를 고려하여 세가지 경우(Scheme 1: 과거 산불위험지수 및 가뭄지수, Scheme 2: 과거 산불위험지수, Scheme 3: 과거 산불위험지수 변화 추세 및 가뭄지수)로 연구를 수행하였다. 본 연구에서 개발된 산불위험예보모델은 예보기간에 상관없이 높은 정확도(피어슨 상관계수(Pearson correlation) >0.8, relative root mean square error <10%)를 나타냈으며, 실제 산불 발생 건에 대해서도 유의미한 결과를 보였다. 과거 산불위험지수의 추세보다는 산불위험지수 값 자체를 입력변수로 사용하는 것이 높은 정확도를 보였으며, 가뭄지수 사용과 관계없이 좋은 결과를 나타냈다.

U-마켓에서의 사용자 정보보호를 위한 매장 추천방법 (A Store Recommendation Procedure in Ubiquitous Market for User Privacy)

  • 김재경;채경희;구자철
    • Asia pacific journal of information systems
    • /
    • 제18권3호
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

증발산량 관측 대표위치 선정에 관한 연구: 춘천댐 유역을 중심으로 (A study on the selection of evapotranspiration observatory representative location in Chuncheon Dam basin)

  • 박재곤;김기영;이용준;황보종구
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.979-989
    • /
    • 2022
  • 수문조사에서는 시·공간적 한계 및 제약으로 인하여 대표지점을 통한 관측이 필수적이다. 수문자료의 활용 및 자료의 정확성에 있어 특정 유역을 대표하는 관측소가 부족한 실정이다. 또한 현재 증발산량 측정 위치에 대한 기준이 사실상 전무하기 때문에 본 연구에서는 증발산량 측정 위치 결정에 관한 방법을 제시하고자 한다. 증발산량 측정 위치 결정은 증발산량 측정에 주로 사용되고 있는 에디공분산(eddy covariance) 측정 방법에서 관측 타워(Flux Tower) 운영범위를 고려한 격자를 선정하였으며 증발산량에 영향을 미치는 인자, 증발산량 위성자료를 통해 대표위치 격자를 산정하였다. 산정된 대표위치 격자는 양호, 보통, 미흡으로 분류하였다. 결과로 산정된 양호격자의 수는 54개이다. 격자의 분류에서 나타난 특징으로 지형, 토지이용에서 격자의 분류가 이루진 것으로 판단된다. 특히 표고나 시가지의 경우 편차가 크게 나타났으며 산정된 양호 격자는 두 분포 사이의 집단으로 판단된다.

독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리 (Measurement and Quality Control of MIROS Wave Radar Data at Dokdo)

  • 전현정;민용침;정진용;도기덕
    • 한국해안·해양공학회논문집
    • /
    • 제32권2호
    • /
    • pp.135-145
    • /
    • 2020
  • 해양에서의 파랑관측은 부이나 압력계 등을 이용하여 수면변위를 관측하는 직접관측방법과 Radar를 이용하여 관측하는 원격관측방법으로 구분된다. 직접관측방법은 정확도가 높지만, 악기상 시 파손 및 유실 위험이 크며 외해 설치 시 많은 유지 보수비용이 필요하다는 단점을 가지고 있다. 반면 Radar와 같은 원격관측방법은 장비를 육지에 계류하여 유지관리가 용이하지만 직접관측방법과 비교하면 정확도가 다소 낮은 단점이 있다. 본 연구에서는 원격파랑관측자료의 품질을 개선하기 위해 독도에 설치되어 운영 중인 MIROS Wave and Current Radar(MWR) 관측자료의 수집 및 분석을 하였으며, 이를 기상청에서 운영 중인 해양파고부이(CWB)의 관측자료와 비교하였다. 그리고 MWR 관측자료의 품질을 개선하기 위해 1) MIROS사에서 개발한 필터(Reduce Noise Frequency, Phillips Check, Energy Level Check)의 복합적인 사용(최적필터; Optimal Filter), 2) OOI(Ocean Observatories Initiative)에서 개발한 Spike Test 알고리즘(Spike Test) 그리고 3) 유의파고-주기 관계식을 이용한 새로운 필터(H-Ts QC)를 사용하여 신뢰도가 낮은 이상자료(Noise; 시계열 자료 중 급격하게 자료가 발산하여 정상자료가 아닌 것으로 판단되는 자료)의 제거 및 보정을 수행하였다. 결과적으로 3가지의 품질관리기법을 적용한 MWR의 파랑관측자료는 유의파고에 대해서는 일정 부분 신뢰도를 가지지만 유의파주기에서는 여전히 오차가 존재하며 이에 대한 개선이 요구된다. 또한, MWR의 파랑관측자료는 3 m 이상의 고파랑에서는 CWB와 다소 양상이 달라지는 한계가 발생하므로 이를 위한 장기간의 원격파랑관측 자료의 수집과 분석, 그리고 필터 개발 등에 관한 지속적인 연구가 필요하다.

가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석 (Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis)

  • 오유림;김재환;박형민;백강현
    • 대한원격탐사학회지
    • /
    • 제31권6호
    • /
    • pp.531-548
    • /
    • 2015
  • 위성영상을 이용하여 산출된 대기운동벡터(AMV)와 라디오존데 바람 관측 자료를 이용한 검증결과는 산출된 AMV가 지속적으로 관측 자료에 비해서 풍속이 약하게 나타나는 Slow Speed Bias(SSB)를 보여 주었다. 이러한 SSB는 표적추적, 표적선정, 그리고 고도할당 단계의 오차에 의해 야기될 수 있으며, 이 중 고도할당 단계의 오차는 SSB를 발생시키는 주된 요인으로 여겨진다. 그러나 최근 연구에서는 고도할당 단계의 개선만으로는 SSB 문제를 해결하는데 한계가 있음을 밝혔다. 그러므로 본 연구에서는 새로운 표적추적 알고리듬을 개발하여 SSB를 감소시킴으로서 기상청 현업 AMV 알고리듬의 성능을 개선하고자 하였다. 표적추적 단계의 오차는 표적 내에 다양한 시 공간 규모의 바람이 포함되어 벡터가 과도하게 평균된 움직임으로 계산되거나, 구름이 추적 시간동안 형태를 유지하지 못하고 변형되는 경우에 발생한다. 이러한 문제를 해결하기 위해 개발된 표적추적 알고리듬에서는 가우시안 군집분석(GMM)을 이용하여 변형이 적고 추적에 용이한 저온 군집을 표적으로 재선정하고, 이미지를 변형시켜 군집의 움직임을 보다 쉽게 추적할 수 있게 하였다. 또한 표적을 추적하기 위한 방법으로 거리제곱합 방법을 사용하였다. 개발된 알고리듬과 기존 COMS 알고리듬을 천리안 위성의 적외채널 영상에 적용하여 AMV를 산출하였으며, 이를 라디오존데 관측 자료와 비교 검증해 보았다. 제안된 알고리듬으로 산출된 AMV는 기존 알고리듬으로 산출된 AMV보다 평균 풍속이 $2.7ms^{-1}$증가함에 따라 SSB가 평균 29%까지 감소하는 개선된 결과를 보여주었다. 그러나 개발된 알고리듬으로 산출된 AMV는 중 하층의 정확도가 감소하였고, 기존 알고리듬에 비해 산출되는 AMV 벡터수가 약 40%까지 감소함을 보였다. 이에 따라 중 하층의 정확도 개선과 기존의 알고리듬과 비교하여 산출되는 벡터 개수가 감소하는 문제를 보완하기 위한 연구가 필요할 것으로 판단된다.

TerraSAR-X를 이용한 조간대 관측 (Investigation of Intertidal Zone using TerraSAR-X)

  • 박정원;이윤경;원중선
    • 대한원격탐사학회지
    • /
    • 제25권4호
    • /
    • pp.383-389
    • /
    • 2009
  • TerraSAR-X자료를 이용하여 고해상 X-밴드 SAR시스템을 이용한 조간대 갯벌 관측에의 적용 가능성을 시험하였다. 연구대상지 역은 강화도 남단과 영종도를 잇는 조간대이며, 단일편파자료와 이중편파자료를 이용하였다. 연구내용은 다음과 같은 세 가지로 분류된다. 첫째, X-밴드 영상에서의 연안의 레이더 반사도 특성 연구 및 waterline 추출 정밀도를 평가하였다. 연안지역의 waterline은 HH 편광자료의 레이더 반사도 특성을 통하여 추출하였을 때 가장 신뢰도가 높았으며, TerraSAR-X 시스템의 짧은 파장과 높은 궤도정밀도로 인하여 정밀한 지리좌표로의 변환이 가능하였다. 연구지역의 조간대 지형 경사도는 평균적으로 수평방향으로 60 m당 20 cm의 고도변화를 가지므로, TerraSAR-X HH 편광자료를 이용한 waterline 추출은 정밀한 조간대 DEM 추출로 응용될 수 있다. 둘째, 이중편파자료의 편파특성을 이용한 조간대 영생식물의 산란특성을 관측하였다. 조간대 수륙경계부에서 잘 관측되는 칠면초와 같은 염생식물은 해수면변화에 따른 조간대의 육지화 모니터링에 좋은 표적이 된다. TerraSAR-X 이중편파자료의 산란특성을 이용한 염생식물 관측결과는 2007년에 현장에서 취득된 실측자료와 비교하여 3 dB 이내의 정밀도로 일치하였다. 셋째, 단일편파자료의 레이더 간섭기법을 이용한 조간대 DEM작성을 시도하였다. 조간대 내에서 육지화가 진행된 지역은 표면에 염생식물이 발달하였음에도 불구하고 높은 간섭긴밀도를 나타내었다. 레이더 간섭기법을 통한 DEM의 제작은 일반적인 조간대에서는 적용이 제한적이며, TanDEM-X의 적용이 필요하다.