• Title/Summary/Keyword: Current sensing accuracy

Search Result 80, Processing Time 0.027 seconds

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Precise Numerical Simulation of Microwave Scattering from Natural Deciduous Leaves Using the Method of Moment

  • Oh Yisok;Hong Jin-Young
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.586-589
    • /
    • 2004
  • A numerical algorithm using the Method of Moments (MoM) is introduced to compute precisely the scattering matrices of very thin deciduous leaves in this paper. At first, a dyadic Green's function was formulated and an integral equation for a volumetric current distribution in a lossy dielectric body. Then, the MoM was applied to the scattering problem with a specific technique to handle the numerical poles. The accuracy of the numerical technique was verified by examining the technique with various ways, and used to examine the validity regions of the classical analytical models.

  • PDF

A Study of Development of Highway Maintenance System of RFID Multiple Wireless-Network Environment (중연계 무선네트워크 환경의 도로유지관리계측 시스템 개발에 관한 연구)

  • Lee, Sang-Woo;Song, Jong-Keol;Nam, Wang-Hyun;Kim, Hak-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.147-152
    • /
    • 2006
  • Wireless Sensor Networks provide a new paradigm for sensing and disseminating information from various environments, with the potential to serve many and diverse applications. Recent advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas. For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field. In order to evaluate the application of field monitoring system, lab tests, field test and FEM analysis are conducted. Therefore the accuracy of RFID wireless sensor data is verified.

  • PDF

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

VEHICLE LOCALIZATION METHOD USING THE IMAGES FOR CAR NAVIGATION SYSTEM

  • Lee, Seung-Yong;Joo, In-Hak;Cho, Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.573-575
    • /
    • 2007
  • Current accuracy of GPS is within the meter level, which is sufficient for route guidance of car navigation system(CNS). But receiving condition of GPS signal varies time to time according to surrounding objects such as building, trees, and terrain. For this reason, the performance of the route guidance is degraded in urban region. In this paper, to improve the performance of the route guidance of CNS, we propose a method for determining location of vehicle using a location of the traffic signal and its pixel size extracted from real-time Image.

  • PDF

Research on a Spectral Reconstruction Method with Noise Tolerance

  • Ye, Yunlong;Zhang, Jianqi;Liu, Delian;Yang, Yixin
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.562-575
    • /
    • 2021
  • As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

Current and Future Status of GIS-based Landslide Susceptibility Mapping: A Literature Review

  • Lee, Saro
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.179-193
    • /
    • 2019
  • Landslides are one of the most damaging geological hazards worldwide, threating both humans and property. Hence, there have been many efforts to prevent landslides and mitigate the damage that they cause. Among such efforts, there have been many studies on mapping landslide susceptibility. Geographic information system (GIS)-based techniques have been developed and applied widely, and are now the main tools used to map landslide susceptibility. We reviewed the status of landslide susceptibility mapping using GIS by number of papers, year, study area, number of landslides, cause, and models applied, based on 776 articles over the last 20 years (1999-2018). The number of studies published annually increased rapidly over time. The total study area spanned 65 countries, and 47.7% of study areas were in China, India, South Korea, and Iran, where more than 500 landslides, 27.3% of all landslides, have occurred. Slope (97.6% of total articles) and geology (82.7% of total articles) were most often implicated as causes, and logistic regression (26.9% of total articles) and frequency ratio (24.7% of total article) models were the most widely used models. We analyzed trends in the causes of and models used to simulate landslides. The main causes were similar each year, but machine learning models have increased in popularity over time. In the future, more study areas should be investigated to improve the generalizability and accuracy of the results. Furthermore, more causes, especially those related to topography and soil, should be considered and more machine learning models should be applied. Finally, landslide hazard and risk maps should be studied in addition to landslide susceptibility maps.

The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images (Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구)

  • Lee, Seulki;Song, Jong-Sung;Lee, Chang-Wook;Ko, Bokyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.545-557
    • /
    • 2022
  • This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

A Study on Monitoring for Process Parameters Using Isotherm Radii (등온선 반경을 이용한 공정변수 모니터링에 관한 연구)

  • Kim, Ill-Soo;Chon, Kwang-Suk;Son, Joon-Sik;Seo, Joo-Hwan;Kim, Hak-Hyoung;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.