• Title/Summary/Keyword: Current production

Search Result 3,181, Processing Time 0.032 seconds

Current situation and future prospects for beef cattle production in Indonesia - A review

  • Agus, Ali;Widi, Tri Satya Mastuti
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.976-983
    • /
    • 2018
  • Increasing demand in developing countries for animal sources of food including red meat is predicted to double by 2050. In Indonesia, there has always been a gap between supply and demand of beef with national beef production only satisfying about 45% of demand. This paper aims to describe the current features and prospects for beef production systems in Indonesia. The first part of the article reviews and analyses Indonesian beef cattle production systems. The second part addresses issues related to the current systems for beef production that could become important for future development of the beef industry in Indonesia. Recommendations to improve breeding and reproduction, to empower smallholder farmers, to improve the capacity of industry-related institutions to enhance technology transfer, and to develop systems for industry development such as integration of palm oil or plantations with beef cattle production are briefly discussed.

Design of a Luenberger Observer-based Current Sensorless Multi-loop Control for Boost Converters

  • Li, Xutao;Chen, Minjie;Shinohara, Hirofumi;Yoshihara, Tsutomu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Multi-loop control of a boost converter needs a current-sensing circuit to detect the inductor current. Current sensorless multi-loop control reduces the cost, size and weight of the converter. The Luenberger observer (LO) is widely used to estimate the inductor current for current sensorless control of a switching converter. However, the design of the LO-based sensorless multi-loop control has not been well presented, so far. In this paper, a closed-loop characteristics evaluation method is proposed to design an LO-based current sensorless multi-loop control for boost converters. Simulations show evaluations of the closed-loop characteristics. Practical experiments on a digital processor confirm the simulations.

Evaluation of Rice Nitrogen Utilization Efficiency under High Temperature and High Carbon Dioxide Conditions

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.168-168
    • /
    • 2022
  • According to the 5th Climate Change Report, global average temperature in 2081~2100 will increase 1.8℃ based on RCP 4.5 and 3.7℃ based on RCP 8.5 from the current climate value (IPCC Working Group I AR5). As temperature is expected to increase due to global warming and the intensity and frequency of rainfall are expected to increase, damage to crops is expected, and countermeasures must be taken. This study intends to evaluate rice growth in terms of nitrogen utilization efficiency according to future climate change conditions. In this experiment, Oryza sativa cv. Shindongjin were planted at the SPAR facility of the NICS in Wanju-gun, Jeollabuk-do on June 10, and were planted and grown according to the standard cultivation method. Cultivation conditions are high temperature, high CO2 (current temperature+4.7℃·CO2 800ppm), high temperature (current temperature+4.7℃·CO2 400ppm), current climate (current tempreture·CO2 400 ppm). Nitrogen was varied as 0, 9, 18 kg/10a. The N content and C/N ratio of all rice leaves, stems, and seeds increased at high temperature, and the N content and C/N ratio decreased under high temperature and high CO2 conditions com pared to high temperature. Compared to the current climate, NUE increases by about 8% under high temperature and high CO2 conditions and by about 2% under high temperature conditions. This seems to be because the increase in temperature and CO2 induced the increase in biomass. ANUE related to yield decreased by about 70% compared to the current climate under high temperature conditions, and decreased by about 45% at high temperature and high CO2, showing a tendency to decrease compared to high temperature. This appears to be due to reduced fertility and poor ripening due to high temperature stress. However, as the nitrogen increased, the number of ears and the number of grains increased, slightly offsetting the production reduction factor.

  • PDF

Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production (Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung;Koh, Jae-Hwa
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.

Numerical simulation for increment of neutron production rate in SCBF device (SCBF 장치에서 중성자 생성률 증대를 위한 수치해석)

  • Ju, Heung-Jin;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2184-2186
    • /
    • 2005
  • Neutron production is very important to apply fusion energy through SCBF(Spherically Convergent Beam Fusion) device and its rate is Proportional to the square of the ion current$({\propto}I^2)$. Also the ion current has a close relation with the potential well structure in grid cathode. In this paper, the ion current is calculated for the increasement of neutron production rate in a variety of grid cathode geometry. The atomic and molecular collision are taken into account by Monte Carlo Method and Potential is calculated by Finite Element Method. Main processes of the discharge is the ionization of $D_2$ by fast $D_2^+$ ion. As the number of a cathode ring is small and gap distance decreases, the ion current increases and neutron production rate will increase.

  • PDF

Full digital control of permanent magnet AC servo motors

  • Lee, Jin-Won;Kim, Dong-Il;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we present a full digital control scheme which controls currents and speed of the permanent magnet AC servo motor with large range of bandwidth and high performance. The current equations of the permanent magnet AC servo motor are linearized by feedback linearization technique. Both acceleration feedforward terms and IP controllers, whose gains are functions of motor speed, are used in order to control motor currents. In addition the phase delays in current control loops are compensated by placing phase lead-lag compensators after current commands, which make it possible to avoid high gains in the current controllers. Unity power factor can be achieved by the proposed current controller. Pulsewidth modulation is performed by way of the well-known comparison with a triangular carrier signals. The velocity controller is designed on the basis of the linearized model of the permanent magnet AC servo motor by the proposed current controller. The performance of the entire control system is analyzed in the presence of uncertainty in the motor parameters. The proposed control scheme is implemented using the digital signal processor-based controller composed of an Analog Device ADSP 2111 and a NEC78310. The pulsewidth modulation (PWM) signals are generated through a custom IC, SAMSUNG-PWM1, which has the outputs of current controllers as input. The experimental results show that the permanent magnet AC servo motor can be always driven with high dynamic performance by the proposed full digital control scheme of motor speed and motor current.

  • PDF

MF(Multi-Function) Cathode for High Current Density CRT

  • Kim, Tae-Wook;Bae, Min-Cheol;Youn, Young-Jun
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.23-26
    • /
    • 2004
  • A limitation of oxide cathode is the high current density, caused by low electrical conductivity of an emitter layer. This limitation can be overcome by increasing the conductivity, and uniform dispersion of Ni powder and pore agent could be achieved by using the screen-printing method. This new cathode has shown not only high current density reliability but also improved performance characteristics and as such given the name "Multi-Function cathode". It is expected to be a good replacement of the impregnated cathode.

Pig meat production in the European Union-27: current status, challenges, and future trends

  • G. G. Mateos;N. L. Corrales;G. Talegon;L. Aguirre
    • Animal Bioscience
    • /
    • v.37 no.4_spc
    • /
    • pp.755-774
    • /
    • 2024
  • The main objective of this study was to present data on the current situation and future trends of pig meat production in the European Union-27 (EU). Pig production has played an important social and economic role for centuries in many states of the EU. In 2022, pig meat production in the EU reached 23 M tons, which represented 21% of total production worldwide. The two key reasons that justify such amount of pork produced, are the acceptance and high consumption of the meat by the local population and the high quality of the meat produced which facilitated pork export. However, current data show a reduction in pork production for the last three years, as a consequence of a series of events that include i) problems with the chain of ingredients supply, ii) uncontrolled increase in African Swine Fever (ASF) outbreaks, iii) fast recovery of pig production in China, iv) increasing concerns by the rural population on the high cost to meet future requirements of the EU legislation on farm management, environmental sustainability and animal welfare, v) increased cost of all inputs involved in pig production and vi) limited interest of the new farmer generation to work on the pig sector. Consequently, pork production is expected to decrease in the EU for the next years, although sales will be maintained at a relative high level because pork is the meat preferred by local consumers in most EU countries. In order to maintain the favourable position of the pork industry in the near future, strategies to implement include: i) maintain the quality of the meat destinated to export markets, ii) improve the control of outbreaks of ASF and other swine diseases, iii) implementation of technological innovations to improve working conditions making more attractive to work in the pork sector of the food chain to the new generation of farmers and workers.

Current situation and future prospects for global beef production: overview of special issue

  • Smith, Stephen B.;Gotoh, Takafumi;Greenwood, Paul L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.927-932
    • /
    • 2018
  • The demand for beef as a protein source is increasing worldwide, although in most countries beef accounts for considerably less than half of total meat consumption. Beef also provides a highly desirable eating experience in developed countries and, increasingly, in developing countries. The sustainability of beef production has different meanings in the various geographical and socio-economic regions of the world. Natural resources including land mass and uses, rainfall and access to livestock feed, and the robustness of the economy are major determinants of the perception of beef sustainability. In this overview of the 2016 International Symposium on "Future Beef in Asia" and this subsequent Special Edition of the Asian-Australasian Journal of Animal Sciences on "Current Situation and Future Prospects for Global Beef Production", the contributions have been grouped into the following categories: Countries in Southeast Asia; Europe; and Countries producing highly marbled beef for export and/or domestic consumption. They also include reference to Special Topics including marbled beef production, and use of "omics" technologies to enhance beef quality assurance. Among these broad categories, notable differences exist across countries in the production and marketing of beef. These reflect differences in factors including natural resource availability and climate, population size, traditional culture and degree of economic development including industrial and technological developments. We trust that the International Symposium and this Special Edition on Current Situation and Future Prospects for Global Beef Production, the contents of which that are briefly summarized in this paper, will serve as a valuable resource for the livestock industries, researchers and students with an interest in enhancing the prospects for sustainable, efficient beef production that satisfies the growing size and complexity of consumer demands and markets for beef.

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF