• 제목/요약/키워드: Current power generation

Search Result 1,270, Processing Time 0.035 seconds

Single Cell Stacked Planar Type SOFC Assembled Using a Ag-Current Collector (Ag 집전체를 적용한 평판형 SOFC 단전지)

  • Cho, Nam-Ung;Hwang, Soon-Cheol;Lee, In-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.720-726
    • /
    • 2007
  • Current collectors of SOFC play a significant role on the performance of power generation. In this study a single cell stacked SOFC was assembled using Ag-mesh as a cathode current collector, and evaluated its performance. No gas leakages of the single cell stack occurred in the tests of gas detection and OCV measurement. The OCV and initial power of the stack were 1.09V and $0.45W/cm^2$, respectively, under the flow rates of air at 2,500 cc/min and $H_2$ at 1,000 cc/min at the test temperature of $750^{\circ}C$. A degradation rate of 44.0% was measured during the prolonged time of 307 h. The relatively low durability of the tested single cell stack was found to be the evaporation of Ag-mesh at the current corrector.

A study on reducing the harmonic wave in the electronic ballast (전자식 안정기의 고조파 저감에 관한 연구)

  • 박찬근;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.484-488
    • /
    • 2000
  • This paper proposes a highy efficient inverter circuit for fluorescent lamp inverters using two state capacitors. A waveform of full-wave rectification used as a direct current power supply at fluorescent lamp inverters contains a lot of harmonic wave from inrush current which is generated near the maximum of input voltage with purse shape when voltage smoothing capacitor is charged. Therefore, In order to suppress inrush current which will result in harmonic wave, This paper proposed a method to control abrupt charging current by use of charging voltage at pre-state capacitor. As the result of it, power factor comes to be improved through the suppression of harmonic wave generation at supply current. Validity as to this experiment is confirmed through simulation.

  • PDF

TERRAPOWER, LLC TRAVELING WAVE REACTOR DEVELOPMENT PROGRAM OVERVIEW

  • Hejzlar, Pavel;Petroski, Robert;Cheatham, Jesse;Touran, Nick;Cohen, Michael;Truong, Bao;Latta, Ryan;Werner, Mark;Burke, Tom;Tandy, Jay;Garrett, Mike;Johnson, Brian;Ellis, Tyler;Mcwhirter, Jon;Odedra, Ash;Schweiger, Pat;Adkisson, Doug;Gilleland, John
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.731-744
    • /
    • 2013
  • Energy security is a topic of high importance to many countries throughout the world. Countries with access to vast energy supplies enjoy all of the economic and political benefits that come with controlling a highly sought after commodity. Given the desire to diversify away from fossil fuels due to rising environmental and economic concerns, there are limited technology options available for baseload electricity generation. Further complicating this issue is the desire for energy sources to be sustainable and globally scalable in addition to being economic and environmentally benign. Nuclear energy in its current form meets many but not all of these attributes. In order to address these limitations, TerraPower, LLC has developed the Traveling Wave Reactor (TWR) which is a near-term deployable and truly sustainable energy solution that is globally scalable for the indefinite future. The fast neutron spectrum allows up to a ~30-fold gain in fuel utilization efficiency when compared to conventional light water reactors utilizing enriched fuel. When compared to other fast reactors, TWRs represent the lowest cost alternative to enjoy the energy security benefits of an advanced nuclear fuel cycle without the associated proliferation concerns of chemical reprocessing. On a country level, this represents a significant savings in the energy generation infrastructure for several reasons 1) no reprocessing plants need to be built, 2) a reduced number of enrichment plants need to be built, 3) reduced waste production results in a lower repository capacity requirement and reduced waste transportation costs and 4) less uranium ore needs to be mined or purchased since natural or depleted uranium can be used directly as fuel. With advanced technological development and added cost, TWRs are also capable of reusing both their own used fuel and used fuel from LWRs, thereby eliminating the need for enrichment in the longer term and reducing the overall societal waste burden. This paper describes the origins and current status of the TWR development program at TerraPower, LLC. Some of the areas covered include the key TWR design challenges and brief descriptions of TWR-Prototype (TWR-P) reactor. Selected information on the TWR-P core designs are also provided in the areas of neutronic, thermal hydraulic and fuel performance. The TWR-P plant design is also described in such areas as; system design descriptions, mechanical design, and safety performance.

Development of Current Control System Appropriate to a Big-Capacity LED Lamp using Microprocessor (마이크로 프로세서를 이용한 대용량 LED 등기구에 적합한 전류제어 시스템 개발)

  • Park, InKyoo;Lee, WanBum
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2015
  • The purpose of this study is to develope a current variation control system appropriate to the various LED(Light Emitting Diode) lamps using current control system equipped with microcontroller based voltage regulator of power driving circuit. For this, we will suggest a stable control system of current variation to enable a stable power-supply and current-control, consisting of circuit to minimize the affects on the LED forward voltage using variable resistance and compensating resistance. The method of constant current circuit and energy savings using microcontroller based voltage regulator suggested in this study can be applied to various a big capacity LED lamp to minimize the unnecessay heat generation and to control resistace delicately. Ultimately, we expect the results of this study will upgrade the reliability of LED lamp by supplying the current stably.

A Novel Operational Method of PV Power Generation System for SPE (수소제조시스템을 위한 새로운 태양광발전시스템 운전기법에 관한 연구)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.408-410
    • /
    • 2006
  • To chase maximum power point at every moment under a conventional MPPT control method, a voltage and current coming out from PV-cell are needed to be feedbacked. So, the structure of control circuit becomes so complex and the MPPT control is in risk of control failure. In the newly developed control method, the current flowing into SPE cell is the only one considerable factor. So, the structure of control circuit becomes simple and the manufacturing cost of the control device decreases. Especially, in case of a huge system of PV-SPE system, because the voltage coming out from PV-cell is not needed to be feed backed, this system can be operated much more safely. In this paper, the PV-SPE system was actually manufactured based on the simulation model of PSCAD/EMTDC program and the results tested were shown. Authors are sure that it is the most useful method to maximize power from PV to SPE with only a feedback of SPE input current.

  • PDF

Analysis on Operational Characteristics of PV-SPE System by a Novel MPPT Control (PV-SPE 시스템을 위한 새로운 MPPT 제어의 운전특성 분석에 관한 연구)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.121-124
    • /
    • 2006
  • In the newly developed control method, the current flowing into SPE cell is the only one considerable factor. So, the structure of control circuit becomes simple and the manufacturing cost of the control device decreases. In conventional power comparison MPPT control method however, a voltage and current coming out from PV cell should be feedbacked to chase maximum power point at every moment. Then, the structure of control circuit becomes so complex and the risk of control failure is much higher than the novel MPPT control method. Therefore, PV generation system by a novel MPPT control method is especially operated much more safely in case of a huge system, because the voltage coming out from PV-cell is not needed to be feedbacked. In this paper, the PV-SPR system was actually manufactured based on the simulation model of PSCAD/EMTDC program and the results tested were shown. Authors are sure that it is the most useful method to maximize power from PV to SPE with only a feedback of SPE input current.

  • PDF

Maximum Power Point Tracking Control for a Grid-Tie Photovoltaic Inverter (계통 연계형 태양광 인버터에서 최대 출력 점 추적 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.72-79
    • /
    • 2009
  • Solar energy is desirable due to its renewable and pollution-free properties. In order to utilize the present utility grid infrastructure for power transmission and distribution, a do-dc boost converter and grid connected dc-to-ac inverters are needed for solar power generation. The dc-dc boost converter allows the PV system to operate at high do-link voltage. The single-phase inverter provides the necessary voltage and frequency for interconnection to the grid. In this paper, first, current loop transfer function of a single-phase grid-tie inverter has been systematically derived Second the MPPT of conductance increment method at converter side is proposed to supply the maximum power to the inverter side. Simulation results are shown to access the performance of PV system and its behaviour at the interconnection point.

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

Seismic Performance Evaluation Methodology for Nuclear Power Plants (원전 구조물의 내진성능 평가 방법론 고찰)

  • Ann, Hojune;Kim, Yousok;Kong, Jung Sik;Choi, Youngjin;Choi, Se Woon;Lee, Min Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.32-40
    • /
    • 2018
  • Since 2000, the frequency of earthquakes beyond the 5.0 magnitude quake has been increasing in the Korean peninsula. For instance, the 5.0-magnitude earthquake in Baekryong-do in 2003 has occurred, and recent earthquake with Gyeongju(2016) and Pohang(2017) measured respectively magnitude of 5.2 and 5.8 on the Richter scale. As results, the public concern and anxiety about earthquakes are increasing, and therefore it is necessarily required for social infrastructure to reinforce seismic design and energy production facilities directly related to the national economy and security. This study represents the analysis of seismic performance evaluation methodology such as Seismic Margin Assessment (SMA), Seismic Probabilistic Risk Assessment (SPRA), High Confidence Low Probability Failure (HCLPF) in nuclear power plants in order to develop optimal seismic performance improvement. Current methodologies to evaluate nuclear power plants are also addressed. Through review of the nuclear structure evaluation past and current trend, it contributes to be the basis for the improvement of evaluation techniques on the next generation of nuclear power plants.

Switching Characteristics Analysis of a 3-phase Voltage Disturbance Generator Applicable to Linear and Nonlinear Loads (선형 및 비선형 부하에 적용 가능한 3상 전압변동 발생기의 스위칭 특성해석)

  • Nho, Eui-Cheol;Park, Sung-Dae;Kim, In-Dong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.163-170
    • /
    • 2008
  • Switching characteristics in both linear and nonlinear loads are analysed for a 3-phase voltage disturbance generator applicable to the performance test of custom power devices. Since the line current of the linear load is continuous the natural commutation of the SCR thyristors comprising the generator is carried out with ease. However, in case of nonlinear load the natural commutation scheme is different from that of the linear load due to the discontinuous load current. Through the analysis it is found that a specific switching condition can provide the voltage sag, swell, outage, and voltage unbalance generation in nonlinear load too. The operation of the voltage disturbance generation is described and the usefulness of the generator is verified through simulation and experimental results. It is expected that the generator can be used in the performance test of the custom power devices with low implementation cost and easy control.