• Title/Summary/Keyword: Current modeling sensorless

Search Result 7, Processing Time 0.021 seconds

Sensorless Control of BLDC Motor using d-q Synchronously Rotating Reference Frame Concept (d-q 동기좌표 변환 개념을 이용한 BLDC 전동기의 센서리스)

  • Moon, Jong-Joo;Heo, Hong-Jun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2015
  • A sensorless control algorithm of brushless DC (BLDC) motors with a model current based on 120 degree conduction mode is proposed in this paper. The rotor speed and position can be estimated using the current model of BLDC motor, which is a modified version of the conventional current model of permanent magnet synchronous motor. The rotor speed and position can be obtained using the difference of the actual current and the model current. The position error caused by the parameter errors of the model current is compensated using a PI controller and the feedback loop of the real current. The validity of the proposed sensorless control algorithm is verified through simulation.

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

PMSM Sensorless Control using a General-Purpose Microcontroller (범용 마이크로콘트롤러를 이용한 PMSM 센서리스 제어)

  • Kang, Bong-Woo;La, Jae-Du;Kim, Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.227-235
    • /
    • 2011
  • This paper describes a PMSM control algorithm for realizing a low-cost motor drive system using a general purpose microcontroller. The proposed sensorless algorithm consists of the current observer and the sensorless scheme based on instantaneous reactive power. Also the control board system is not the high-cost DSP(digital signal processor) system but the general purpose microcontroller and it allows to reduce the unit cost of the motor system. However the clock frequency of the proposed microcontroller is one-fifths for the clock frequency of the DSP. In addition, the switching frequency must be selected as the lower frequency because of complex mathematic modeling of the sensorless algorithm. the low switching frequency augments the noise of the motor and might make accurate speed control impossible. Thus this paper proposes the optimization method to supplement the drawback of the general purpose microcontroller and the usefulness of the proposed method is verified through the experiment.

Voltage Information Effect in Speed Sensorless Control of Indution Motor (유도전동기의 센서리스 속도제어에서 상전압 정보의 영향)

  • Kim, S.K.;Kim, C.H.;Lee, K.U.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.983-985
    • /
    • 2001
  • Sensorless induction motor drive is much studied due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of induction motor including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of sensorless induction motor drive. However, the phase voltage does not have to be directly monitored because of switching noise, and they may be reconstructed by using the command voltage. The output voltage of SVPWM-VSI supplying the motor has a considerable error, especially in a low speed range because SVPWM-VSI has a poor resolution in a low command voltage. Such a voltage information effect in speed sensorless control of induction motor has been investigated in this paper.

  • PDF

A simulation of Rotor Position Estimation of SRM using Flux linkage Modeling (SRM의 쇄교자속 모델링을 통한 회전자 위치 추정기법의 시뮬레이션)

  • Baik Won-Sik;Kim Nam-Hun;Kim Dong-Hee;Choi Kyeong-Ho;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.36-39
    • /
    • 2002
  • This paper presents a simulation results of sensorless control of Switched Reluctance Motor(SRM) using neural network. The basic algorithm of this scheme is based on the flux linkage characteristic according to the phase current and the rotor position. A sufficient simulation data was used for neural network training. Through measurement of the phase flux linkage and phase currents the neural network is able to estimate the rotor position. The simulation result shows some good results, and possibility of this algorithm.

  • PDF

An Analysis of Position Detection Error of Sensorless Controller and Modeling of Drive System for Interior Permanent Magnet BLDC Motors (영구자석 매입형 BLDC 전동기 센서리스 제어시스템의 위치검지 오차분석 및 모델링)

  • Lee, Dong-Myung;Kim, Hag-Wone;Cho, Kwan-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This paper proposes the modeling of sensorless drive system using 120 degree conduction method for IPM (Interior Permanent Magnet) BLDC motors and analyzes characteristics of the terminal voltage that is used to detect the rotor position. This paper shows that the ZCP (Zero-Crossing Point) of the measured terminal voltage used In sensorless control is ahead of that of the back EMF of IPM motors because they have a saliency. This research also analyzes that the amount of position detection error is related to saliency, rotor speed, and load condition. In addition, this paper shows that motors have bigger advance angles than we have expected because the ZCP of terminal voltage precedes the actual ZCP, and under operation conditions such as heavy load and high speed it may generate abnormal currents that flow toward opposite direction after phase current becomes zero.

Sensorless Field Oriented control Modeling for Constant Speed Induction motor (정속도 운전을 위한 유도 전동기 센서리스 벡터제어 시스템 모델링)

  • 황재호;이학주;안재황;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.376-379
    • /
    • 1998
  • This paper be described the constant speed control of induction motor for high performance. Vector control system which is used the stator current, voltage of IM is modeled without the speed, flux sensor. The proposed control system be simulated using Matlab with Simulink. Results include the fast response of the constant speed and torque in proposed system. For high performance, this paper presents the robust characteristics of field oriented control system for IM.

  • PDF