• Title/Summary/Keyword: Current meter

Search Result 346, Processing Time 0.027 seconds

Estimation of Electron Dose Rate using CCD Camera (CCD 카메라를 이용한 전자빔 조사량의 예측)

  • Kim, Jin-Gyu;Kim, Young-Min;Kim, Youn-Joong;Lee, Sang-Hee;Hong, Ki-Min;Oh, Sang-Ho
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • We report a useful method to estimate the electron dose rate which may be a decisive factor to characterize sample properties. Even though most mircoscopes have their own exposure meters, there are several practical concerns when such exposure meters are used to measure the electron dose rate: 1) Specimen should be avoided within the entire area of exposure meter; 2) beam current has to be always recorded whenever the operation mode is changed; 3) the electron dose rate can not be calculated for the beam current beyond the detectable range. To overcome these limitations, we suggest a useful method which utilize a CCD (charge coupled device) camera which is now a popular detector to obtain the final electron micrographs. We have evaluated the CCD sensitivity using the linear relationship between electron current on the exposure meter and counter ratio on the CCD camera which are built in KBSI-HVEM (high voltage electron microscope). Applying the new method, we obtained the CCD sensitivity which are approximately 0.039 counts/$e^-$ and 1.37 counts/$e^-$ for the Top-TV and the HV-GIF CCD cameras, respectively.

The Effects of Transcranial Direct Current Stimulation Combined High Intensity Interval Training on Aerobic Exercise Capacity of the Soccer Player (tDCS를 결합한 고강도 인터벌 훈련이 축구선수의 유산소 운동능력에 미치는 영향)

  • Yang, Dae-Jung;Uhm, Yo-Han
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.105-117
    • /
    • 2021
  • Purpose : This study examined the effect of transcranial direct current stimulation (tDCS) combined high intensity interval training (HIIT) on the aerobic exercise capacity of college soccer players. Methods : The subjects of this study were 30 college soccer players. They were divided into a high intensity interval training group combining transcranial direct current stimulation (Group I) and a high intensity interval training group (Group II). Each group had 15 subjects randomly assigned. After receiving general soccer training, each group additionally received high intensity interval training combined with transcranial direct current stimulation and high intensity interval training for 30 minutes 5 times a week for 8 weeks. Their VO2max and 20 meter shuttle run test, Yo-Yo intermittent recovery test were analyzed before the intervention. After 8 weeks of intervention, the above items were re-measured and an intergroup analysis was performed. Results : As a result of comparative analysis of VO2max intake between groups, 20 meter shuttle run test and Yo-Yo intermittent recovery test, a statistically significant difference was found. The high intensity interval training group (Group I) combined with transcranial direct current stimulation showed a significant difference in aerobic exercise capacity compared to the high intensity interval training group (Group II). Conclusion : These results showed that high intensity interval training group combined with transcranial direct current stimulation was more effective for aerobic exercise. Based on this study, this study proposes an effective program for patients as well as elite athletes. In the future, it is necessary to develop an effective transcranial direct current stimulation program and to study how to apply it for various patients.

Linearity study for the field coil current and the load of eddy current dynamometer (Eddy current 동력계의 부하와 와전류의 직진성 관련 연구)

  • 문병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.66-72
    • /
    • 2000
  • Commercial eddy current dynamometers control the torque of ratating body (poer supply machine) with the field coil current being operated as a braking force. In this paper, we studied about the relation between the field coil current and the torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer, it is linear relation between the brake force measured from the torque meter (e.g. load cell, strain gage or spring balance etc.) which is installed at the case of dynamometer and the multiply of shaft rpm by the square of field coil current (N$\times$Ia2). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measures the torque of rotating body without special torque measuring devices.

  • PDF

Identification of In-Home Appliance Types Based on Analysis of Current Consumption Using Energy Metering Circuit

  • Tran, Tin Trung;Pham, Trung Xuan;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • One of the important applications of activity sensing in the home is energy monitoring. Many previous methodologies for detecting and recognizing household appliances have been proposed. This paper presents an approach that uses an energy metering circuit (EMC) to classify and identify the various electrical devices in home based on root-mean-square (RMS) consumed current value. EMC gathers the RMS current values created by appliance state transition (e.g., on to off) and apparatus operating process. In this paper, an identification algorithm is proposed to detect a change in current levels using the standard deviation of current signals and their average values. In addition, characteristic of the appliance is extracted concerning four feature parameters concerning the number of current levels, the minimum level, the maximum level, and signal-to-noise ratio (SNR) of them. Experiment results validate the reliable performance of the proposed identification method for 11 representative appliances.

Meter-long coated conductor by R2R PVD methods on RABiTS template

  • Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Chung, Jun-Ki;Yang, Joo-Saing;Park, Yu-Mi;Shi, Dong-Qi;Song, Kyu-Jeong;Park, Chan;Yoo, Sang-Im;Moon, Seung-Hyun;Kim, Young-Cheol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.13-16
    • /
    • 2004
  • Three film deposition systems (pulsed laser deposition, sputtering, and evaporation) equipped with reel-to-reel metal tape moving apparatus were installed and used to make meter-long coated conductor. Buffer architecture of $CeO_2/YSZ/Y_2O_3$ was deposited on Ni alloy using sputtering, evaporation, and PLD. YBCO superconducting layer was continuously deposited on buffered metal tape by PLD. End-to-end critical current ($I_c$) of 107 A at 77 K, self-field has been achieved in 1 em-wide tape (thickness 0.6∼1.0${\mu}{\textrm}{m}$, tape moving speed 54∼72 cm/hr) over 1 meter length.

Comparison of Dose Measurement of Glass Dose Meter, Semiconductor Dose Meter, and Area Dose Meter in Diagnostic X-ray Energy (진단영역 X선 에너지에서 유리선량계, 반도체선량계, 면적선량계의 선량 실측 비교)

  • Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.483-489
    • /
    • 2019
  • This paper obtained and compared these dose values by setting and comparing the X-ray imaging conditions (tube voltage 60 kVp, 70 kVp, 80 kVp, tube current 10 mAs, 16 mAs and X-ray field size are 10 × 10 cm, 15 × 15 cm). Each dose value was measure 10 times and represented as an average value. The purpose of this experiment is to serve as a reference for the X-ray exposure of diagnostic areas according to the type of dosimeter and to help with another dose measurement. The results of the experiment showed very little difference between the glass dosimeter(GD) and semiconductor dosimeter values due to changes in tube voltage of 60, 70, 80 kVp, regardless of field sized, but for dose area product(DAP), the difference in dose value was significant according to field size.

Design and Fabrication of Portable Dissolved Oxygen Measurement System (휴대용 용존산소 측정 시스템의 설계 및 제작)

  • Chang, Choong-Won;Lee, Sung-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.219-223
    • /
    • 2008
  • The dissolved oxygen (DO) sensors were fabricated by screen printing method, and potable dissolved oxygen measurement system was fabricated for low cost products. The fabricated sensors had high current change and fast response according to dissolved oxygen concentrations in the applied voltage of 0.7 V. The DO measurement system was consisted of MCV, amplifier, filter, power supply and display. DO concentrations were programed to display as digital percentages by converting the analog value. It is expected that the fabricated DO measurement system can replace the expensive commercial DO meter, because it reveals the high accuracy of ${\pm}0.5%$ to the standard solution and the response time of about 100 sec like the commercial DO meter.

  • PDF

Absolute Evaluation of Inductor Using Current Transformer Comparator (전류변성기 비교기를 이용한 인덕터의 절대 평가)

  • Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Gil;Kim, Han-Jun;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • We have developed two absolute evaluation technology of inductor using current transformer (CT) comparator. One is the method that the reactance of inductor is obtained by analysing the equivalent circuit of CT with inductor connected to series at secondary terminal of CT. The other is the method that the reactance of inductor is obtained by comparing phase displacement of current flowing on inductor by using CT comparator. These technologies have the advantage to apply up to rated current and voltage of inductor. The method was applied to inductors under test in the range of $100 {\mu}H{\sim}1\;H$. The inductance of the inductor under test obtained in this study are consistent with those measured by LCR meter using the same inductor within an expanded uncertainty (k = 2) in the overall range of inductance.

Development of Conductivity Standards for Metals using the van der Pauw Method (van der Pauw method를 이용한 금속도전율 표준시편 개발)

  • Kang, Jeon-Hong;Yu, Kwang-Min;Lee, Sang-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1617-1620
    • /
    • 2013
  • The widely-used measurement methods for conductivity of non-magnetic metals are van der Pauw method, Two Point Probe method and Eddy Current method. Among them a more simpler and easier method is the Eddy Current method and an instrument using the method is a Conductivity Meter which can measure a conductivity by contacting its probe on a sample surface. However, conductivity standards are essentially needed to confirm the meter's performance or to calibrate it. In this study, six kinds of the standards which are made of Cu, Al-1, Al-2, brass, Zn and SUS-316 are developed and conductivity ranges for the standards are 2.27 %IACS ~ 101.6 %IACS with measurement uncertainty of less than 0.3 %.