• 제목/요약/키워드: Current load disturbance

검색결과 82건 처리시간 0.03초

전동기 시스템의 미지외란 및 전류 관측기 설계 (Design of Unknown Disturbance and Current Observer for Electric Motor Systems)

  • 이명석;정경모;공경철
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.615-620
    • /
    • 2015
  • DOB (Disturbance Observer) is an useful control method for estimating the disturbance applied to dynamic systems. Disturbance observer can be used to implement a robust control system to generate a control input for rejecting the disturbance, and it can be also used to estimate the disturbance to obtain information. The system that uses disturbance estimation is investigated for high performance control such as automatic door systems, walking robot and electric power steering system in vehicles. In this paper, a novel disturbance observer which is called disturbance and current observer for estimating load torque in the motor system is proposed. The difference between the DOB for disturbance rejection and DCOB is mathematically verified. Current and angular velocity are required for estimating the load torque of the motor in DOB. However, the DCOB can estimate load torque and current without current sensor. DCOB is designed based on modeling of the motor system. Appropriate Q-filter is selected and the applicability of DCOB is verified by simulation. The estimated disturbance and current of the electric motor can be verified without current sensor, as experiments of the actual motor system.

Load Disturbance Compensation for Stand-alone Inverters Using an Inductor Current Observer

  • Choe, Jung-Muk;Moon, Seungryul;Byen, Byeng-Joo;Lai, Jih-Sheng;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.389-397
    • /
    • 2017
  • A control scheme for stand-alone inverters that utilizes an inductor current observer (ICO) is proposed. The proposed method measures disturbance load currents using a current sensor and it estimates the inductor current using the ICO. The filter parameter mismatch effect is analyzed to confirm the ICO's controllability. The ICO and controllers are designed in a continuous-time domain and transferred to a discrete-time domain with a digital delay. Experimental results demonstrate the effectiveness of the ICO using a 5-kVA single-phase stand-alone inverter prototype. The experimental results demonstrate that the observed current matches the actual current and that the proposed method can archive a less than 2.4% total harmonic distortion (THD) sinusoidal output waveform under nonlinear load conditions.

Current Sliding Mode Control with a Load Sliding Mode Observer for Permanent Magnet Synchronous Machines

  • Jin, Ningzhi;Wang, Xudong;Wu, Xiaogang
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.105-114
    • /
    • 2014
  • The sliding mode control (SMC) strategy is applied to a permanent magnet synchronous machine vector control system in this study to improve system robustness amid parameter changes and disturbances. In view of the intrinsic chattering of SMC, a current sliding mode control method with a load sliding mode observer is proposed. In this method, a current sliding mode control law based on variable exponent reaching law is deduced to overcome the disadvantage of the regular exponent reaching law being incapable of approaching the origin. A load torque-sliding mode observer with an adaptive switching gain is introduced to observe load disturbance and increase the minimum switching gain with the increase in the range of load disturbance, which intensifies system chattering. The load disturbance observed value is then applied to the output side of the current sliding mode controller as feed-forward compensation. Simulation and experimental results show that the designed method enhances system robustness amid load disturbance and effectively alleviates system chattering.

3상 UPS용 인버터의 강인한 비간섭 디지털제어 (Robust Decoupling Digital Control of Three-Phase Inverter for UPS)

  • 박지호;허태원;신동렬;노태균;우정인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

인버터응용을 위한 외란관측기에 의한 부하전류추정 방법 (A Disturbance Observer-Based Load Current Estimation Method for Ups Inverter Applications)

  • 장재영;이교범;송중호;최익;유지윤;최주엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권3호
    • /
    • pp.116-124
    • /
    • 2002
  • Design and analysis of disturbance observer-based deadbeat control fur single-phase inverter applications are comprehensively presented in this paper. Load current can be estimated by disturbance observer, which is basically structured with the first order equation in this case and is regarded as a relatively simple method in comparison with conventional full-order Luenberger observer. Also, an inherent one-step delay problem appeared in the deadbeat control method is overcome by a simple prediction technique proposed. Output voltage dip is reduced by the feedforward control with the change rate of the estimated load current involved in the deadbeat current control loop. The proposed algorithms are verified by the respective simulation and experiment results.

단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기 (A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System)

  • 김성종;손영익;정유석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.110-112
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI controller for a single-phase inverter system that is robust against load changes. In this paper, we regard the output voltage changes due to various loads as disturbances of the control system, Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystems of Matlab Simulink. Compared to a simple PI control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

  • PDF

선형 및 비선형 부하에 적용 가능한 3상 전압변동 발생기의 스위칭 특성해석 (Switching Characteristics Analysis of a 3-phase Voltage Disturbance Generator Applicable to Linear and Nonlinear Loads)

  • 노의철;박성대;김인동
    • 전력전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.163-170
    • /
    • 2008
  • 본 논문에서는 DVR 등의 전력품질 개선장치들의 성능시험에 용이하게 사용하기 위하여 제안한 3상 전압변동 발생기에 대하여 선형뿐만 아니라 비선형 부하에서도 동작이 가능함을 보이는 스위칭 특성해석을 하였다. 선형 부하의 경우는 전류가 연속이므로 전압변동 발생기를 구성하는 SCR 사이리스터의 자연전류(natural commutation)가 용이하게 발생하지만, 비선형 부하의 경우는 전류 불연속 모드 동작이 발생하여 SCR 사이리스터의 원활한 스위칭이 이루어질 수 없는 경우도 있다. 따라서 비선형 부하 시 전류 불연속 구간에서의 SCR 사이리스터의 스위칭 패턴을 분석하여 전압 새그(sag), 스웰(swell), 순간정전(outage), 전압불평형(voltage unbalance) 동작이 선형에서와 동일하게 발생되는 조건을 파악하였다. 각각의 기능을 발생시키는 원리와 동작 특성을 해석하였으며 시뮬레이션과 실험을 통하여 성능을 확인하였다. 본 논문에서 다룬 전압변동 발생기는 전원 외란 발생을 낮은 비용으로 구현해 낼 수 있고 구조와 제어가 간단하여 전력품질 개선과 관련된 연구를 하는데 용이하게 활용될 것으로 기대한다.

PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구 (Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM)

  • 고종선;윤성구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법 (Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs)

  • 류효준;윤영두;모재성;최승철;우태겸
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

함수제어 기법을 이용한 Buck 컨버터 제어 (Control of the Buck Converter using the Function Control Law)

  • 이성백;원영진;김태웅
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권6호
    • /
    • pp.81-89
    • /
    • 1997
  • In order to achieve the zero voltage regulation of the output voltage, the function control law will be used. In the previous function control law, only the proportional controller is used and the stability of the closed loop system was not analyzed. In this paper, for the realization of the control law, a new method to retrieve the low frequency component of the inductor voltage is proposed and analyzed. The large signal closed loop characteristics are alos analyzed to ensure the stable operation of the system disturbances. By using the function control law in the control system, the effect of the disturbance of the supply voltage is reduced in 93.3% for the direct dusty ration method. Also, in the effect of the disturbance of the load current, the output voltage has a logn recovery-time and is changed proportionally in the direct duty ratio method, but has stable in the function control law. Finally, the analysis shows that the disturbance of the output voltage being due to the supply voltage variation can be eliminated completely and the closed loop output voltage is insensitive to the disturbance of the load current. Therefore, it is proved that by using the function control law, the switching power supply with zero-voltage regulation output voltage can be realized.

  • PDF