The former earth leakage breaker is operating by total leakage current which is the vector-sum of resistive leakage current and capacitive leakage current. However, the electric disaster like the electric shock and fire is caused mainly by resistive leakage current. Therefore, the earth leakage breaker is ideal when it is operating by resistive leakage current. In this paper, the theory for finding the component of resistive leakage current from total leakage current is suggested and it is embodied to actual circuit. The resistive leakage current can be found by integrating the total leakage current during half cycle of line voltage. Thus, we can simply find resistive leakage current by using OP-AMP integrators, and we can confirm that the resistive leakage current is computed exactly from total leakage current obtained by resistive leakage current and capacitive leakage current. The results that the earth leakage breaker is operating within regular interrupt time are verified when the former earth leakage breaker's controller circuit is replaced by the proposed controller circuit.
In this paper, we analyzed form of flowing leakage current in electrical installation. Leakage current ($I_g$) is consisted of resistive leakage current($I_{gr}$), capacitive leakage current($I_{gc}$), and inductive leakage current($I_{gl}$). Resistive leakage current($I_{gr}$) is big occasion than capacitive leakage current($I_{gc}$) in system, Residual Current Protective Device(RCD) detects correctly leakage current. But,$I_{gc}$ is big occasion than $I_{gr}$, RCD is malfunctioned It is resistance to lead to electric fire in electrical device. We manufactured outlet that resistive leakage current detecting circuit is had. Manufactured outlet displayed performance exactly in leakage current of 5 mA Therefore, this product estimates that contribute on electric fire courtesy call.
Resistive leakage current flowing ZnO blocks increases with its ages, which is an important indicator of arrester deterioration. However, a complicated circuitry is essential to measure the resistive leakage current included in the total leakage current, and the difficult handling of the measurement makes few applications to the fields. In this paper, we propose a resistive leakage current measurement device which is composed of a current detection circuit and an analysis program operated on a microprocessor. The device samples the input leakage current waveform digitally, and discriminate the zero-cross and the peak point of the waveform to analyze the current amplitude vs. phase. The capacitive leakage current is then eliminated from the total leakage current by using an algorithm to extract the resistive leakage current only. Also, the device can be operated automatically and manually to analyze the resistive leakage current even when the leakage current waveform is distorted due to various types of arrester deterioration. To estimate the performance of the device, we carried out a test on ZnO blocks and lightning arresters. From the results, it is confirmed that the device could analyze most parameters needed for the arrester diagnostics such as total leakage current. resistive leakage current, and the $3^rd$ harmonic leakage current.
In this paper, we study from of flowing leakage current in electrical installation. Leakage current is expressed by a resistivity leakage current($I_{gr}$), a capacitive leakage current($I_{gc}$), an inductivity leakage current($I_{gl}$). General Zero Phase Current Transformer (ZCT) detect a leakage current($I_{g}$) that are conjoined resistivity leakage current and capacitive leakage current. In case $I_{gr}$ is big than $I_{gc}$, there is no singular problem in leakage current detection of system. But, in case $I_{gc}$ is big than $I_{gr}$, earth leakage breaker can not prevent accident effectively. Can lower electric leakage perception current to 5 mA if apply resistivity leakage current detecting circuit. We can achieve prevention of electricity disaster spontaneously.
The conventional Residual Current Protective Devices(RCD, or earth leakage circuit breaker, ELB) operates depending on the total leakage current which is the vector-sum of resistive and capacitive components of a leakage current. However, the electric disaster such as electric shock or fire is mainly caused by the resistive component. Therefore, in this view point, the RCD is more realistic when it operates by the resistive component of the leakage current. In this paper, a new algorithm for measuring the resistive leakage current from the total leakage current is suggested, and is realized to an actual circuit. According to the suggested algorithm, the resistive component of the leakage current can be found by integrating the total leakage current over only a half cycle of the line voltage, and it is realized by using analog switches and resettable integrators. It is confirmed through experiments that the suggested algorithm detects, within maximum average error of 6.74%, the resistive leakage current from the total leakage current, and the RCD employing the suggested algorithm brakes the circuit within the regular interrupt time(30msec).
Kim, Jongseok;Kim, HyungTae;Kim, Seungtaek;Choi, Won-Jin;Jung, Hyundon
Current Optics and Photonics
/
제3권6호
/
pp.516-521
/
2019
The electrical leakage levels of GaN-based light-emitting diodes (LEDs) containing leakage paths are estimated using photoluminescence (PL) and photovoltaic properties under photoexcitation conditions. The PL intensity and open-circuit voltage (VOC) decrease because of carrier leakages depending on photoexcitation conditions when compared with reference values for typical LED chips without leakage paths. Changes of photovoltage-photocurrent characteristics and PL intensity due to carrier leakage are employed to assess the leakage current levels of LEDs with leakage paths. The current corresponding to the reduced VOC of an LED with leakage from the photovoltaic curve of a reference LED without leakage is matched with the leakage current calculated using the PL intensity reduction ratio and short-circuit current of the LED with leakage. The current needed to increase the voltage for an LED with a leakage under photoexcitation from VOC of the LED up to VOC of a reference LED without a leakage is identical to the additional current needed for optical turn-on of the LED with a leakage. The leakage current level estimated using the PL and photovoltaic properties under photoexcitation is consistent with the leakage level measured from the voltage-current characteristic obtained under current injection conditions.
본 연구에서는 콘센트용 누설전류 감지 및 자동차단 모듈을 개발하였다. 제안된 누설전류 검출 모듈은 저항성 누설전류 검출 칩을 사용한 콘센트용 누설전류 검출 모듈과는 차별화된, 전력 프로세서인 MSP430 MCU(Micro Controller Unit)를 이용하여 합성 누설전류에서 저항성 누설전류를 프로그램으로 분리 검출한다. 제안된 방법으로 구현된 모듈은 저항성 누설전류 5mA 이상에서 조기 검출 및 자동차단 기능이 있을 뿐만 아니라, 저항성 누설전류 검출 기능이 프로그램으로 구현되어 있어 저항성 누설전류 5mA 이하 또는 이상으로도 쉽게 조정이 가능한 장점이 있다.
It is important to measure the resistive component separately from the total leakage current at power distribution line. It is because electric disasters such as electric shock and fire are caused mainly by the resistive component of the total leakage current. In this paper, a new theory for measuring the resistive component separately from the total leakage current is suggested, and is embodied to an actual circuit using operational amplifiers, analog switch and R-C low pass filter. Through experiments for various cases containing both the resistive and capacitive leakage currents, the suggested algorithm is confirmed to be able to measure the resistive leakage current within 4.1% of error even when the capacitive leakage current is much bigger than the resistive one. The suggested method is expected to lower the total cost because it can be realized using simple and cheap devices, and implies the measuring time can be possibly reduced because the resistive leakage current is computed exactly from the signals during only a half period of power voltage.
In this paper, we studied dc leakage current properties analysis of LED lamps of road and landscape lighting when leakage current appeared in dc power line. Generally, converter of LED lighting is divides to insulated type and non-insulated type according to components. When electric leakage happened in AC power line, earth leakage breaker(ELB) senses leakage current and interrupts electric circuit. In dc power source, We need experimental verification about dc electric leakage for electricity safety. In normal wiring conditions and in the water, in case of using insulated type of converter, dc leakage current did not occur. However, in case of using non-insulated type of converter, dc leakage current occurred and passed through into the ground. We found that there is a hazard of electric shock by dc leakage current. We expect that the results of these studies would be helpful for electrical safety of LED lamps for road and landscape lighting.
The leakage current of transmission insulators contaminated with salt, clay, and kaolin was examined in the Gochang's Long Periods Testing Center. The Insulators were artificially contaminated and estimated with the method of equivalent salt deposit density(ESDD). The artificially contaminated insulators were installed with the same condition as in the real transmission power line and applied with 154 (kV). The leakage current of the artificially contaminated insulators was measured with environment conditions, such as temperature and humidity by the a automatic leakage current detecting system. The leakage current of heavily contaminated insulator was abruptly increased above 72[%] of humidity, even though the leakage current was similar between the contaminated and non-contaminated insulators below 72[%] of humidity. Also, it was found that the humidity was much more important than the temperature in the leakage current of transmission insulators. The leakage current of contaminated insulator was decreased when it was plenty of rainfall, resulting from natural washing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.