• Title/Summary/Keyword: Current interrupter

Search Result 87, Processing Time 0.026 seconds

Ion Transport and High Frequency Dielectric of the Hollandite Nax$(Ti_{8-x}Cr_x)O_{16}$ (교류전압 인가 상태에서 저압 진공관의 방전현상)

  • Wang, Gang;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-244
    • /
    • 2008
  • We experimentally investigated discharge phenomena inside vacuum interrupter at 1 to 20 Torr to simulate the vacuum leakage. We used glass type of vacuum interrupter where the internal pressure and the type of gasses can be varied according to requirement. The experiment is conducted under ac applied voltage and the experimental circuit is constructed to simulate the actual circuit used in cubical type insulated switchgear. We used two types of gases such as air and $SF_6$. The use of glass type vacuum interrupter allowed us to measure discharges occurring in vacuum interrupter optically. We measured and discussed the discharge occurring in both gases with a current transformer and ICCD camera. We a1so revealed that electromagnetic wave spectra emitted by the discharge have same frequency range for both gasses.

  • PDF

Simulation of High-current Vacuum Arcs: (I)Axial Magnetic Field (진공차단부 대전류 아크 해석: (I)축방향 자기장)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Choi, Myung-Jun;Kwon, Jung-Lock;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2500-2505
    • /
    • 2007
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compact and environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the electromagnetic behaviors of high-current vacuum arcs for two different types of AMF contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

  • PDF

Experimental Investigations Into Low Current Steady State Arcs In A Dual-Airflow Model Interrupter

  • Shin, Young-June;Cho, Yun-Ok;Kim, Jin-Gi;Lee, Jeong-Rim
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.961-965
    • /
    • 1992
  • It is well-known that shock waves frequently occur inside the nozzle of the interrupter, and that they play important roles in the arc interruption. A model interrupter with two-dimensional dual-airflow nozzles was used for this experiment. The arc was ignited with 1.4 mil copper wire stretched between the electrodes which were spaced out 56 mm. The arc current of 60 to 230 A was achieved by adjusting the external resistance from 5.5 to 1.6 ohms. The arc tests have been conducted for investigating the air arc characteristics, and the effects of shock waves and nozzle pressure ratios on the arc voltage, the arc resistance, the arc power, and average electric field. The results of these tests have been analyzed to provide insights into the arc characteristics for gas circuit breakers. The average electric field is represented by the function of the arc current to show the negative E-I characteristic explicitly. The effects of shock waves and nozzle pressure ratios are shown to be significant for a circuit breaker performance.

  • PDF

A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field (축방향 자기장에 의한 대전류 아크 특성에 관한 연구)

  • Cho, S.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

Dielectric Recovery Characteristics between Poles of 800kV Model Interrupter -I. Effects or separation between Moving Main Contact and Moving Arcing Contact- (800kV 모델차단부의 극간 절연회복특성 -I. 가동주접점과 가동아크접점간 이격거리의 변화에 대한 영향분석-)

  • Shin, Y.J.;Park, K.Y.;Chang, K.C.;Song, K.D.;Jeong, J.K.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.270-273
    • /
    • 1994
  • The capacitive current breaking capability as well as the short circuit current breaking capability is a very important factor in the performance of a circuit breaker. The dielectric recovery capability between poles should be considered in the desist of a circuit breaker because approximately two times of the maximum power system voltage might be applied between poles after the capacitive current be interrupted. The electric field and flow field analyses were utilized in the calculation of dielectric recovery characteristics between poles of 800kV model interrupter. The results show that the separation between moving main contact and moving arcing contact will affect to decrease significantly the electric field strength of a moving arcing contact and an insulation cover, to increase slightly the electric field strength of a fixed arcing contact and to decrease consequently the dielectric recovery capability between poles of the interrupter.

  • PDF

Operational Characteristics of the FCL Using the Mechanical Contact in the Power System (기계적 접점을 이용한 FCL의 동작 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.878-882
    • /
    • 2016
  • These days, SFCLs are being developed in order to limit fault current. However, the superconducting elements that limit the fault current have such problems as capacity increase and require auxiliary devices including cooling device. If devices that comprise the current power network can withstand fault current for at least one cycle, it is possible to limit the fault current with current limiting elements by bypassing it on the fault line. In this study, the fault current limiter was configured with current transformer, vacuum interrupter, and current limiting element. Through the experience, it was confirmed that the fault current was limited within one cycle. The superconducting element, as a current limiting element, limited the fault current by 80 % within one cycle from fault occurrence, and the passive element limited it more than 95 %. Also, through the comparison between resistance curve and power consumption curve, it was confirmed that the current limiting element using a passive element was more stable than the superconducting element that required capacity increase and other auxiliary devices. It was considered that the FCL proposed in this study could limit fault current stably within one cycle from fault occurrence by using the existing power technologies such as fault current detection and solenoid valve operating circuit.

The Magnetic Field Characteristics of Multipolar Axial Magnetic Field type Electrodes for Vacuum Interrupter (진공인터럽터용 다극 종자계전극의 자계분포 특성)

  • Kim, Sung-Il;Park, Hong-Tae;Ahn, Hee-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.92-94
    • /
    • 1999
  • This paper describes axial magnetic field characteristics of multipolar axial magnetic field type electrodes for vacuum interrupter used in vacuum circuit breaker. It was distinguished that axial magnetic field distribution in consideration of eddy current effect between electrodes by finite element method. Throughout experiment of magnetic field measurement, confirmed validity of numericla analysis.

  • PDF

Current and Future Prospects for Insect Behavior-modifying Chemicals in China

  • Du, Jia-Wei
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.222-229
    • /
    • 2000
  • In this paper we will assess the feasibility of some insect behavior-modifying chemicals for insect control, such as male orientation inhibitor, female calling interrupter and female attractant of cotton bollworm Helicoverpa armigera. These behavior-modifying chemicals have advantages of simple chemical structure, easy to synthesize and low price of products. The effects of sub-lethal insecticides on insect chemical communication system and the differences of pheromone communication systems between the resistant and susceptible strain of H. armigera will also be discussed.

  • PDF

Magnetic Field Analysis and Magnetic Force Calculation of Vacuum Interrupter (진공차단부 과계해석 및 전자력 계산)

  • Kim, I.M.;Kim, J.S.;Choi, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.186-188
    • /
    • 2001
  • Recently, the vacuum interrupters have been most widely used in medium voltage level. In the vacuum circuit breaker the most influential part is vacuum interrupter. By performing the precise electromagnetic analysis of the interrupter, we increase the capability of large current interruption. In this paper, diffuse arc and constricted arc are modeled to perform 3D electromagnetic analysis, and also flux distributions and electromagnetic force is calculated at the contacts' separation. It is expected these results will be used importantly in developing the new vacuum interrupters.

  • PDF

Development of Medium Voltage $SF_6$ Interrupter for RMU ($SF_6$ 가스를 이용한 배전급 RMU용 소호부 개발)

  • Lee, B.W.;Sohn, J.M.;Seo, J.M.;Choe, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.301-304
    • /
    • 2001
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device defends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. In this research, the principle of the interrupting techniques are given and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF