• Title/Summary/Keyword: Current decoupling control

Search Result 79, Processing Time 0.025 seconds

A method of utilizing the predicted current in the high performance PI current controller with a control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.1-3
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under the control time delay. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the electrical uncertainties of a servo drive system and the control time delay.

  • PDF

A Study on Variation Control in Building Construction Process (건축공사 공정중심의 변이관리에 관한 연구)

  • Oh Sang-Jun;Suh Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.117-126
    • /
    • 2001
  • The purpose of this study is to present a way of Variation Control in building construction process. The study suggest a way of the application method of shielding, decoupling concept and also Poka-yoke device to control variation that occurs from uncertainty in construction industry with lots of waste factors. The main contents of the study are as follows; (1) It's suggested strategy to apply shielding, decoupling as variation control technique. (2) Current Poka-yoke devices are investigated and analyzed. As a future research, it is required to study continuously on the more effective application method of Poka-yoke device and on existing examples in domestic construction sites for the process improvement.

  • PDF

Decoupling Vector Control for a High-Speed Synchronous Reluctance Motor (고속 동기 릴럭턴스 전동기의 비간섭 벡터제어)

  • 백동기;성세진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.128-135
    • /
    • 1998
  • In the high speed range for salient type synchronous reluctance motor, the effect of iron loss can not be negligible. In this paper, under he assumption that stator iron loss is generated from the equivalent eddy current in the stator, we derive the voltage equations including iron loss from the model that is added the equivalent iron loss in the equivalent inductance in series. The variation of iron loss is dependent on the increase of the operating frequency change for he worse a performance of the vector control system. As there is cross coupling between the d and q axes, it is hard to apply the vector control to the proposed model. Hence, we propose a decoupling current controller for including the effects of iron loss, And we show that the proposed vector control scheme achieves the desired performances through simulation results.

  • PDF

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

State Feedback Control of PWM Current Source Converter and Inverter System (PWM 전류형 컨버터 및 인버터 시스템의 상태궤환 제어)

  • Ko, Sung-Beom;Lee, Dong-Choon;Ro, Chae-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.501-503
    • /
    • 1996
  • In this paper, a novel control strategy for PWM current source converter and inverter is proposed, applying a multivariable state feedback control. The PWM converter controls line current to be sinusoidal and make input power factor unity. In addition, the modulation index control of dc link current is carried out, which produces lower loss of switching devices. Since the voltage control of inverter output filter capacitor is performed a decoupling of the d-q current of the induction motor is well retained. With the proposed algorithm, both high dynamic responses and satisfactory static performance can obtained.

  • PDF

Analysis and Design of Function Decoupling High Voltage Gain DC/DC Converter

  • Wei, Yuqi;Luo, Quanming;Lv, Xingyu;Sun, Pengju;Du, Xiong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.380-393
    • /
    • 2019
  • Traditional boost converters have difficulty realizing high efficiency and high voltage gain conversion due to 1) extremely large duty cycles, 2) high voltage and current stresses on devices, and 3) low conversion efficiency. Therefore, a function decoupling high voltage gain DC/DC converter composed of a DC transformer (DCX) and an auxiliary converter is proposed. The role of DCX is to realize fixed gain conversion with high efficiency, whereas the role of the auxiliary converter is to regulate the output voltage. In this study, different forms of combined high voltage gain converters are compared and analyzed, and a structure is selected for the function decoupling high voltage gain converter. Then, topologies and control strategies for the DCX and auxiliary converter are discussed. On the basis of the discussion, an optimal design method for circuit parameters is proposed, and design procedures for the DCX are described in detail. Finally, a 400 W experimental prototype based on the proposed optimal design method is built to verify the accuracy of the theoretical analysis. The measured maximum conversion efficiency at rated power is 95.56%.

Anti-windup for Complex Vector Synchronous Frame PI Current Controller (복소 벡터 동기좌표계 비례 적분 전류 제어기의 안티와인드업 이득 설정)

  • Yoo, Hyun-Jae;Jeong, Yu-Seok;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.404-408
    • /
    • 2006
  • This paper presents an anti-windup gain selection method for a complex vector synchronous frame PI current controller. The complex vector PI current controller is more robust to the parameter variation than the state feedback decoupling PI current controller. The complex vector PI current controller also includes an integral term, which can results in windup problem when the controller is saturated due to physical limitation of the system. Furthermore, even an anti-windup is utilized, inappropriate gain can deteriorate the performance of the current controller. Therefore, appropriate anti-windup gain selection method for a complex vector current controller has been proposed based on the mathematical description of the current control system. The superior performance of the current control system with the proposed anti-windup gain has been verified by the experimental results.

A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.426-430
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under both the control time delay and the inevitable current prediction error. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the control time delay and the inevitable current prediction error in the servo drive system.

Generalized Vector Control with Reactive Power Control for Brushless Doubly-Fed Induction Machines

  • Duan, Qiwei;Liu, Shi;Schlaberg, H. Inaki;Long, Teng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.817-825
    • /
    • 2018
  • In this paper, a current hysteresis control with good decoupling properties for doubly-fed brushless induction machines (BDFIMs) has been proposed based on a generalized vector model. The independent control of the reactive power and speed for BDFIMs has been achieved by controlling the d-axis and the q-axis current of the control windings (CW). The proposed vector control method has been developed for the power winding (PW) flux frame. Experimental verification of a type Y180M-4 BDFIM prototype with 1/4 pole-pairs has been presented. Evidence of its good performance has been shown through experimental results.

Maximum Efficiency Drive of Vector-Controlled Induction Motors (벡터제어 유도전동기의 최대효율 운전)

  • Yoon, Duck-Yong;Choe, Gyu-Ha;Hong, Soon-Chan;Baek, Soo-Hyun;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.27-37
    • /
    • 1996
  • This paper proposes the control algorithm for maximum efficiency drive of PWM inverter - induction motor system with high dynamic performance. If the induction motor is driven under light load with rated magnetizing current, the Iron loss is excessively large compared with the codder loss which results in doer motor efficiency. Maximum efficiency drive of an induction motor can be achieved by controlling the magnetizing current to satisfy the optimal ratio that leads the total motor loss to be a minimum value at a given speed. The proposed control algorithm essentially uses vector control technique and adopts voltage decoupling control strategy to prevent the degradation of dynamic performance due to reduced magnetizing current. To verify the proposed method, digital simulations and experiments are carried out for a squirrel-cage induction motor with the rating of 2.2[kW].

  • PDF