• Title/Summary/Keyword: Current compensation method

Search Result 547, Processing Time 0.027 seconds

AR Model and LSQ Based Compensation Method for the Saturated Secondary Current of a Current Transformer (AR 모델 및 LSQ 기반 변류기 2차 전류 복원 기법)

  • Chang, Soo-Young;Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.221-226
    • /
    • 2006
  • The current flowing though a power line is measured by a current transformer (CT). Since a CT is a kind of transformer, saturation of magnetic flux in the core may occur when a large primary current flows. This saturation makes the secondary current of a CT distorted and causes problems in the protection point of view. Because of the current distortion, a protection relay cannot collect the correct information showing how the primary power system changed. Consequently, the current distortion may cause the mal-operation or operation time delay of protective relay. In this paper, an algorithm based on AR model and LSQ is proposed to compensate the saturated CT secondary currents. Various test results indicate that the proposed algorithm can accurately compensate a severely distorted secondary current and is not affected by remanence.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Compensation of an Air-Gapped Current Transformer in the steady state (정상상태에서 공극 변류기의 보상)

  • Kang, Yong-Cheol;Park, Ji-Youn;So, Soon-Hong;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.15-17
    • /
    • 2006
  • This paper proposes a compensation method for an air gapped current transformer (CT) in the steady state. An air gapped CT is used in order to reduce a remanent flux in the case of auto-reclosure. It causes larger ratio and angle errors than the closed core CT because the magnetizing inductance of an air-gapped CT is even smaller than the closed-core CT. The core flux is calculated and used to estimate the exciting current in accordance with the hysteresis curve of the air-gapped CT The correct current is obtained by adding the estimated exciting current to the measured secondary current. The performance of the method was investigated for the air gapped CTs with a gap of 0.083mm and 0.249mm for the 120%, 100% and 20% of the rated current. Various test results indicate that the proposed compensation algorithm can improves the accuracy significantly.

  • PDF

Method for PV Module Mismatch Compensation to Reduce Parallel Mismatch in Solar PV Array (태양광 PV 어레이에서 병렬 부정합을 저감시키는 모듈 부정합 보상기법)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.170-171
    • /
    • 2010
  • The power loss due to PV module mismatch in PV array system is analyzed and a mismatch compensation method is proposed. A dc-dc converter is used to compensate for series mismatch caused by a low current module in a string. The converter is controlled to maximize the array power output. The proposed compensation method was verified by PSpice simulation.

  • PDF

Multifunctional UPS with Mode Transfer Method (모드절환식 다기능 무정전 전원장치)

  • Kim, Je-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1049-1051
    • /
    • 2001
  • This paper proposes a new control strategy of multifunctional uninterruptible power supply(UPS) with the performance of active power filter which compensate the harmonics and reactive power. To improve the transient response for the effective compensation in active power filter mode, it is considered that a simple and precise calculation method of the compensation reference current for the harmonics and reactive power compensation. So a novel closed-loop control strategy is used to calculate the reference current. And the current regulated instantaneous voltage control scheme is used in back-up power mode. The system model and control algorithm are described and analyzed, and the system performance is verified by the simulation results.

  • PDF

Compensation of PV Module Current for Reduction of Mismatch Losses in PV Systems (태양광 시스템의 부정합 손실 저감을 위한 모듈 전류 보상 기법)

  • Ahn, Hee-Wook;Park, Gi-Yob
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • A current compensation method to reduce the mismatch loss in PV systems is proposed as a way to increase the power generation efficiency. A dc-dc converter is used to supply currents to irregular modules in a PV string and is powered from the string output. The converter's voltage conversion ratio is adjusted so that all the modules in the string are operated at the maximum power point. The power rating and size of the converter can be reduced since only the current difference between the regular and irregular module may be supplied. The compensated string shows very little voltage mismatch compared to other regular strings. The validity of the proposed method is verified through a simulation and experiments in a prototype PV system.

The Measurement of 3-Phase Current with Single Current Sensor and the Compensation of Voltage Distortion in Carrier-Based PWM Technique (삼각파 비교 PWM 기법에 있어서 단일 전류센서에 의한 삼상 전류 측정 및 전압 왜곡 보상)

  • 김경서
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.292-298
    • /
    • 2003
  • Most of the three phase inverters for adjustable speed drive of AC machines are equipped with two or three current sensors for measurement of three phase current. One method to reduce the number of current sensors is that single current sensor measures the DC link current, then three phase current is reconstructed using the measured value and the switching status. To improve the measurement accuracy, switching state should be maintained for more than minimum switching time. Many papers have been published, which focused on the readjustment of pulse width and compensation of voltage distortion. Those methods are suitable for space vector modulation. But there are some difficulties in applying these methods to carrier-based PWM which is widely used in industry. In this paper, new current measurement method and voltage compensation method are proposed which are suitable for carrier-based PWM, then, the validity of proposed method is confirmed through experiment.

A Study Compensation Method for Dynamic Characteristics in Electro-Hydraulic Servosystem Equipping Load Pressure Feedback Compensator (부하압력 피이드백 보상기를 장착한 전기-유압서보계의 동특성 개선에 관한 연구)

  • Kim, Jong-Kyum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper, a simple structured feedback compensation scheme for a electro-hydraulic servo system to keep the response characteristics unchanged regardless of the load variation is proposed. In electro-hydraulic servo system, servovalve is most important control element. But the relation between input corrent and output flowrate of the servovalve has properties as follows; firstly, in spite of constant input current, output flowrate decreases as load pressure increases, secondly, according to frequency response of typical servovalve, the characteristics of gain and phase shift is something like 2'nd order system. Load pressure feedback compensation method has been applied to eliminate the first influence, the second influence has been improved by phase lead compensation method. As a result of above compensation methods, regardless of variation load condition, spring and inertia load, the compensation scheme has been verified to be effective within the range of frequency less than 25Hz by static response and dynamic response in time domain and frequency domain through experiments.

  • PDF

Compensation of the Rotor Time Constant of Induction Motor using Stator Current Error (고정자 전류오차를 이용한 유도전동기 회전자 시정수보상)

  • 이무영;김승민;윤경섭;구본호;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.585-591
    • /
    • 1998
  • It is proposed a new compensation method in the rotor time constant of indirect vector controlled induction motor. The proposed scheme is an on-line method using the stator current error that is the difference between current command and estimated current calculated from terminal voltages and currents. As the current error becomes to zero, the rotor time constant in the vector controller approaches the real value. The proposed method shows good performances in the transient region as well as in the steady state region regardless of load torque variation, and it is verified by the computer simulation using SIMULINK in Matlab.

  • PDF

A Simple Current Ripple Reduction Method for B4 Inverters

  • Lee, Dong-Myung;Park, Jae-Bum;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1062-1069
    • /
    • 2013
  • This paper proposes a simple current compensation method to improve the control performance of B4 inverters. Four-switch inverters so called B4 inverters employ only four switches. They have a split dc-link and one phase of three-phase motors is connected to the center-tap of split dc-link capacitors in B4 inverters. The voltage ripples in the center tap of the dc-link generate unbalanced three-phase voltages causing current ripples. To solve this problem, this paper presents a simple compensation method that adjusts switching times considering dc-link voltage ripples. The validity of the proposed method is verified by simulations and experiments carried out with a 1 HP induction machine.