• Title/Summary/Keyword: Current Turbine

Search Result 463, Processing Time 0.025 seconds

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

Comparison of Efficiency for Voltage Source and Current Source Based Converters in 5MW PMSG Wind Turbine Systems (전압형 및 전류형 컨버터를 적용한 5MW PMSG 풍력발전시스템의 효율 비교)

  • Kang, Tahyun;Kang, Taewon;Chae, Beomseok;Lee, Kihyun;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.410-420
    • /
    • 2015
  • This paper provides a comparison of power converter loss and thermal description for voltage source and current source type 5 MW-class medium-voltage topologies of wind turbines. Neutral-point clamped three-level converter is adopted for a voltage source type topology, whereas a two-level converter is employed for current source type topology, considering the popularity in the industry. To match the required voltage level of 4160 V with the same switching device of IGCT as in the voltage source converter, two active switches are connected in series for the case of current source converter. Transient thermal modeling of a four-layer Foster network for heat transfer is done to better estimate the transient junction and case temperature of power semiconductors during various operating conditions in wind turbines. The loss analysis is confirmed through PLECS simulations. Comparison result shows that the VSC-based wind turbine system has higher efficiency than the CSC under the rated operating conditions.

A Study on the Performance of an 100 kW Class Tidal Current Turbine (100 kW급 조류발전용 터빈의 성능에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo;Choi, Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • As the problems of global warming are brought up recently, many skillful solutions for developing new renewable energy are suggested. One of the most remarkable things is ocean energy. Korea has abundant ocean energy resources owing to geographical characteristics surrounded by sea on three sides, thus the technology of commercialization about tidal current power, wave power is demanded. Especially, Tidal energy conversion system is a means of maintaining environment naturally. Tidal current generation is a form to produce electricity by installing rotors, generators to convert a horizontal flow generated by tidal current into rotating movement. According to rotor direction, a tidal current turbine is largely distinguished between horizontal and vertical axis shape. Power capacity depends on the section size crossing a rotor and tidal current speed. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for an 100 kW class horizontal axis turbine for low water level. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, We found that torque increased with TSR, the maximum torque occurred at TSR 3.77 and torque decreased even though TSR increased. Moreover we could get power coefficient 0.38 at designed flow velocity.

Vibration control of small horizontal axis wind turbine blade with shape memory alloy

  • Mouleeswaran, Senthil Kumar;Mani, Yuvaraja;Keerthivasan, P.;Veeraragu, Jagadeesh
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • Vibrational problems in the domestic Small Horizontal Axis Wind Turbines (SHAWT) are due to flap wise vibrations caused by varying wind velocities acting perpendicular to its blade surface. It has been reported that monitoring the structural health of the turbine blades requires special attention as they are key elements of a wind power generation, and account for 15-20% of the total turbine cost. If this vibration problem is taken care, the SHAWT can be made as commercial success. In this work, Shape Memory Alloy (SMA) wires made of Nitinol (Ni-Ti) alloys are embedded into the Glass Fibre Reinforced Polymer (GFRP) wind turbine blade in order to reduce the flapwise vibrations. Experimental study of Nitinol (Ni-Ti) wire characteristics has been done and relationship between different parameters like current, displacement, time and temperature has been established. When the wind turbine blades are subjected to varying wind velocity, flapwise vibration occurs which has to be controlled continuously, otherwise the blade will be damaged due to the resonance. Therefore, in order to control these flapwise vibrations actively, a non-linear current controller unit was developed and fabricated, which provides actuation force required for active vibration control in smart blade. Experimental analysis was performed on conventional GFRP and smart blade, depicted a 20% increase in natural frequency and 20% reduction in amplitude of vibration. With addition of active vibration control unit, the smart blade showed 61% reduction in amplitude of vibration.

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

Load and Structural Analysis of an Offshore Wind-Turbine Foundation with Weight Control Functionality (자중조절 기능이 있는 해상풍력 지지구조의 하중 및 구조해석)

  • Oh, Minwoo;Kim, Donghyun;Kim, Kiha;Kim, Seoktae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.453-460
    • /
    • 2016
  • Offshore wind turbines are divided into an upper wind turbine and a lower support structure. Offshore wind turbine system is required to secure high reliability for a variety of external environmental conditions compared to ground wind turbines because of additional periodic loads due to ocean wave and current effects. In this study, extreme load analyses have been conducted for the designed offshore wind turbine foundation with weight control functionality using computational fluid dynamics (CFD) then structural analyses have been also conducted to investigate the structural design requirement.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Combustion Instability in Gas Turbine Engines (가스터빈에서의 연소불안정 현상)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.63-77
    • /
    • 2008
  • This paper described the general concept of combustion instability and its mechanism in gas turbine engines. The approaching method to study this phenomenon was introduced including the up-to-date research activity in tile world. Combustion instability is one of critical problems, still now, affecting engine performance, durability and operation. In addition it is known that this problem is caused by coupling between fuel or air flow fluctuation and heat release rate in gas turbine engines, which is related with NOx reduction strategies. Therefore, in order to understand the current status of combustion instability we reviewed the combustion instability phenomenon in gas turbine engines.

Field Testing and Performance Evaluation of 1.5 kW Darrieus Wind Turbine (1.5 kW 다리우스 풍력터빈 현장 실증 및 성능분석)

  • ALI, SAJID;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.608-613
    • /
    • 2019
  • The purpose of the present study is to analyze and evaluate the performance of a small Darrieus wind turbine installed at the Urumsil region of Deokjeok-do Island in the west of South Korea 50 km away from Incheon. This place has no government electricity so alternate resources of energy needed to be installed there. For this purpose a small Darrieus wind turbine with the capacity of 1.5 kW was developed and installed at the site. The experimental power output of the wind turbine is less than the designed power at the same values of wind speed. This power loss is mainly due to the highly unsteady nature wind of sudden changes in magnitude of wind speed and wind angle. The results of current study can be used to make a future power generation plan for Deokjeok-do and other nearby small islands.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.