• Title/Summary/Keyword: Current Source Converter (CSC) HVDC

Search Result 3, Processing Time 0.024 seconds

A cooperative control study of Jeju ±80kV 60MW HVDC for voltage stability enhancement (제주 ±80kV 60MW HVDC 협조 제어 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1221-1225
    • /
    • 2012
  • This paper describes CSC(Current Sourced Converters)-based HVDC operational strategy for voltage stability enhancement in the power system. In case of CSC-based HVDC system, rectifier and inverter consume reactive power up to about 60% of converter rating. Therefore, CSC-based HVDC is basically not useful system for voltage stability even if AC filters and shunt capacitors are attached. But, If the particular power system condition is fulfilled, CSC-based HVDC also can be the rapid reactive power source for voltage stability enhancement using a cooperative control with converter and AC filters/Shunt Capacitors. In this paper, the cooperative control algorithm is presented and simulated to ${\pm}80kV$ 60MW HVDC system in Jeju island.

A Fault Location Algorithm Using Wavelet Transformation for HVDC Cables (웨이블렛 변환을 이용한 HVDC 케이블 고장점 표정 알고리즘)

  • Kwon, Young-Jin;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1311-1317
    • /
    • 2008
  • In this paper, a fault location algorithm using wavelet transform is proposed for HVDC cable lines. The arriving instants of the first and second fault-induced backward travelling waves can be detected by using wavelet transform. The fault distance is estimated by using the time difference between the two instants of backward travelling waves and the velocity of the travelling wave. To distinguish between the backward wave from fault point and the backward wave from the remote end, polarities of backward waves are used. The proposed algorithm is verified varying with fault distances and fault resistances in underground cables of VSC(voltage source converter) HVDC system and CSC(Current Source Converter) HVDC respectively. Performance evaluations of the proposed algorithm shows that it has good ability for a fault location of HVDC cable faults.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)