• Title/Summary/Keyword: Curl distortion

Search Result 10, Processing Time 0.025 seconds

Prediction of Curl Distortion using Classical Lamination Theory in Stereolithography (SL 광조형 공정에서 고전적층이론을 적용한 곡률 변형 예측)

  • Kim, Gi-Dae;Lee, Jae-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.210-217
    • /
    • 2005
  • A curl distortion induced by shrinkage during stereolithography polymerization process is analyzed with the classical lamination theory. Test parts of different layer thickness and part thickness are manufactured and their deformations are measured with CMM. Curl distortion is generated by the differential shrinkage of the layers, where the total shrinkage includes the shrinkages due to solidification and the change of temperature. It is shown that the curl distortion increases exponentially with decreasing the total thickness of the part, whose smaller layer thickness induces larger curl distortion. It is verified that only a part of the total shrinkage plays a role in generating the curl distortion.

Experimental Investigation on the Distortion Error induced by Shrinkage in Sterolithography Process (광조형 공정 시 수축에 의한 변형 오차의 실험적 고찰)

  • Kim, Gi-Dae;Oh, Young-Tak
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.61-67
    • /
    • 2005
  • During stereolithography processes, one of the main sources of dimensional error of prototype is the distortion effect owing to the shrinkage of resin. In this study, the effects of dimension of specimen, such as length, width, and thickness, on the curl distortion is examined. During the SL processes, the variation of curl distortion ewer is measured according to the number of layers, Through this study, it is verified that there is a big difference of the distortion error in both direction and magnitude between before and after the supports are removed. It Is also observed that end profile of the test part and the upper side around the border are also distorted due to the shrinkage of the resin.

Effects of Dimension of Part and Structure of Supports on the Shape Error in Stereolithography Process (SL 광조형 공정에서 제작물 치수와 지지대 구조가 형상오차에 미치는 영향)

  • Kim, Gi-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2006
  • During stereolithography processes, the shape errors such as curl distortion and distortion of side face are generated due to the shrinkage of liquid resins. In this study, the effects of dimension of part and structure of supports on the shape error are examined. Cubic specimens which have different thicknesses are manufactured and their deformations are measured with CMM. Thicker part generates smaller curl distortion of top face and larger of bottom face. Also thicker part generates larger distortion of side face until part thickness increases to about 20mm. Larger stiffness of supports which is obtained by shorter spacing of the supports and line type contact instead of point type contact generates smaller shape error of the part.

Application of Reverse Engineering System for Improvement of Curl Distortion in Stereolithography Process (광조형 공정시 휨에 의한 변형을 개선하기 위한 역설계 시스템의 적용)

  • Che, Woo-Seong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The slender device(long length and thin width) manufactured by stereolithography process suffers from large curl distortion. This paper adapts two control parameters such as a critical exposure and a penetration depth. The measurement of the test parts dimension are carried out by reverse engineering method with the optical 3-dimensional measurement equipment. We investigate how each parameter contributes to the part accuracy and estimates the optimal set of parameters which minimizes the dimensional error of the test parts. Finally, As being an the RAM slot as being an example of the slender device, the RAM slot is made with the optimal values of control parameter and the results are investigated

  • PDF

Comparison of Mechanical Properties and Form Accuracy in FDM 3D Printing Based on Building Conditions (FDM 방식 3D 프린팅에서 제작 조건에 따른 기계적물성치와 형상정밀도의 실험적 비교)

  • Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.52-59
    • /
    • 2021
  • In this study, we experimentally evaluated the mechanical properties and geometric form accuracy in FDM 3D printing processes based on the printing direction, building direction, and layer thickness. The specimen test results showed that the tensile strength increased by over 33% in the printing direction compared to the direction perpendicular to printing and the tensile strength becomes larger as the layer thickness decreased. Furthermore, the tensile and impact strengths in the building direction were significantly reduced due to the difference in the interlayer joining and bonding strengths of the fused material. Additionally, shrinkage of the material due to phase change induced curl distortion especially in thin and long 3D-printed products, which increased as the layer thickness increased.

A Study on the Signal Distortion Analysis using Full-wave Method at VLSI Interconnection (VLSI 인터커넥션에 대한 풀-웨이브 방법을 이용한 신호 왜곡 해석에 관한 연구)

  • 최익준;원태영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.101-112
    • /
    • 2004
  • In this paper, we developed a numerical analysis model by using ADI-FDTD method to analyze three-dimensional interconnect structure. We discretized maxwell's curl equation by using ADI-FDTD. Using ADI-FDTD method, a sampler circuit designed from 3.3 V CMOS technology is simplified to 3-metal line structure. Using this simplified structure, the time delay and signal distortion of complex interconnects are investigated. As results of simulation, 5∼10 ps of delay time and 0.1∼0.2 V of signal distortion are measured. As demonstrated in this paper, the full-wave analysis using ADI-FDTD exhibits a promise for accurate modeling of electromagnetic phenomena in high-speed VLSI interconnect.

Shape accuracy and curing characteristics of photopolymer during fabrication of three-dimensional microstructures using microstereolithography (마이크로광조형법을 이용한 미세삼차원구조물의 제조공정 중 형상정밀도 및 경화특성에 관한 연구)

  • Jung, Dae-Jun;Kim, Sung-Hoon;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • The curing characteristics of a liquid photopolymer during microstereolithography and the shape accuracy of thereby fabricated microstructures were investigated experimentally. A He-Cd laser with a wavelength of 442nm and a photopolymer consisted of a commercial resin from SK chemical and a photoinitiat or were used for the experiment. By varying the laser beam power and scanning speed of the focused laser beam, minimum curing thickness of 50 ${\mu}ㅡ$ was obtained. The distortion of solidified structure due to adhesion force was measured and the optimum fabrication conditions were determined. Also, the feasibility of direct fabrication of three-dimensional microstructures by Super IH process was examined.

Forming Error and Compensation in RP Using SLA (SLA를 이용한 쾌속조형시 성형오차와 보정)

  • Park, Sang-Ryang;Park, Dong-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2002
  • SLA (Stereolithography Apparatus) it a process used to rapidly produce polymer components directly from a computer representation of the part. Though SLA is being recognized as an innovative technology, it still cannot be used to fully practical application since it lacks of dimensional accuracy compared to conventional process. If the shrinkage were perfectly uniform and no distortion took place, excellent part accuracy could still be achieved through and appropriate scaling factor when generating the build file. However, in certain geometries involving intersecting thick and thin sections, nonuniform retrain shrinkage becomes the engine of part distortion. In order to improve the part accuracy of SLA, this paper evaluates how largely each parameter of SLA contributes to the part accuracy and estimates the optimal set of parameter which minimizes the dimension error of the test part, "Slab (100mm$\times$100mm$\times$2mm)"and "scale bar"part. Three control parameters such as critical exposure, generation depth and fill cure depth are used.

Quantitative Comparisons of the Characteristics of various Rapid Prototypes and RP machines (여러 가지 방식의 쾌속조형물 특성 및 장비 성능의 정량적 비교)

  • Kim, Gi-Dae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1237-1242
    • /
    • 2007
  • For the various RP processes and machines, quantitative comparisons were carried out, which include the variations of roughness according to inclined angle of surface, tensile strength and heat-resistance, shape accuracy affected by curl distortion, manufacturability of submilli-scale structure, and manufacturing speed. It was observed that steeper surface results in smoother roughness except Eden500V of Objet. Specimen made by LOM process showed the best heat-resistance, but that of SL process had heat-resistance only up to $60^{\circ}C$. Generally, tensile strength in the building direction was shown to be smaller than in the scanning direction, but SL process showed the opposite results. RM6000II of CMET was superior in the manufacturing small-scale structure below 0.2mm, and Z510 of Zcorp. and ViperPRO of 3D systems were great in manufacturing speed.

  • PDF

Automatic Test Method of Sizing Degree by Analysis of Liquid Penetration and its Surface Behavior (액체 침투 특성과 표면 거동 분석을 이용한 사이즈도 자동측정법)

  • Lee, Ji-Young;Kim, Gyung-Chul;Kim, Chul-Hwan;Sheikh, M.I.;Park, Hyun-Jin;Kim, Sung-Ho;Sim, Sung-Woong;Cho, Hu-Seung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.18-28
    • /
    • 2012
  • This study was to develop a novel automatic system for measuring St$\ddot{o}$ckigt sizing degree and contact angle at a time. The conventional methods to measure sizing degree had serious problems in obtaining significant differences according to different dosages of a sizing agent, and moreover they disclosed unique limitation due to liquid types used and tester's subjectivity. However, the newly developed system could get reproducible results through total automation of all procedures including liquid dropping, image acquisition and measurement of both St$\ddot{o}$ckigt sizing degree and contact angle. For the St$\ddot{o}$ckigt sizing test, the automatic system could measure sizing degree with more definite differences according to different dosage of AKD, compared to the conventional method. For the contact angle test, the automatic system showed a similar trend to the conventional method but had smaller contact angles due to distortion of an image focus by a sheet curl than the conventional testing machine. The problem from the image out of focus due to specimen curl will be overcome with adopting a new specimen holder for the future system.