• Title/Summary/Keyword: Curing temperature condition

Search Result 307, Processing Time 0.029 seconds

Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends (4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2002
  • In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (E$\_$a/) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (E$\_$t/) derived from Coats-Redfern method, were increased within the 10∼30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (E$\_$c/) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$\_$c/ showed a similar behavior with E$\_$a/. The fracture toughness (K$\_$IC/) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.

Determination of Thermal Cracking Index of Internal Restricted Mass Concrete Using a Numerical Analysis (수치분석을 통한 내부구속 매스콘크리트의 온도균열지수 결정)

  • Seo, Ki-Young;Kim, Hee-Sung;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2007
  • The service life of concrete structure is to a great extent influenced by crack developed at early ages of concrete material. Especially, hydration heat is a main cause of thermal cracking at mass concrete structures. The thermal cracking of massive structure is analyzed of the thermal cracking index which was presented Concrete Standard Specifications. The thesis analyzed the thermal cracking index which considered various variable (cement type, height of casting, curing condition, concrete mixing temperature, the unit cement content) at internal restricted mass concrete. The analysis result is denoted increase and decrease rate of thermal cracking index whenever the variables change. The results is helped to understand thermal cracking every time structures is designed and constructed. And I think that it is useful economic and stable design of mass concrete structures.

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Influence of Micro Pattern Geometry and Printing and Curing Conditions in Gravure Printing on Printing Performance When Using Conductive Ink (패턴 형상, 인쇄 및 건조 조건이 전도성 잉크를 이용한 그라비아 인쇄 결과물의 성능에 미치는 영향)

  • Ahn, Byoung-Joon;Han, Kyung-Joon;Ko, Sung-Lim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.263-271
    • /
    • 2010
  • e-Printing is a new manufacturing technology for electronic products and is based on traditional printing technology. The electronic products require a large area to facilitate printing and to be economical. A gravure printing system that supports a roll to roll (R2R) manufacturing process can be used to reduce the cost and to achieve the required accuracy. Many factors such as drying method, drying temperature, tension,-printing velocity, ink viscosity, ink conductivity, pattern accuracy, and dot geometry influence the performance of printed electronics. These factors are closely interrelated. The optimum condition for printing must be determined to enhance the performance of the printed electronics. In this study, lines and areas are printed using a gravure printer with conductive ink under different conditions of the above mentioned factors. The results are analyzed to investigate the influence of various factors on the performance of the printed electronics.

Electro-Optic Characteristics of Polymer Dispersed Liquid Crystal Cell with Transparent State Initially (초기에 투명한 상태인 고분자 분산형 액정셀의 전기 광학 특성)

  • 김미숙;원해경;송성훈;이명훈;이승희
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.298-304
    • /
    • 2004
  • We fabricated a polymer dispersed liquid crystal (PDLC) cell using LC with negative dielectric anisotropy and UV curable monomer exhibiting transparent state initially (called normally transparent (NT)) and studied the electro-optic characteristics. The NT PDLC cell made with the ratio of LC : monomer = 70/30 wt%, curing temperature of 20 $^{\circ}C$ and strong UV intensity of 198 ㎽/$\textrm{cm}^2$ had high contrast ratio and showed good electro-optic characteristics. In this condition, LC is aligned vertically on the substrate due to the vertical alignment layer and the polymer made with the UV exposure does not influence the alignment of the LC much. Therefore, the transmittance at the zero voltage is very high and the scattering state of the cell is good after applying the voltage because LC with negative dielectric anisotropy tries to align perpendicular to the field. And also, the NT PDLC cell showed better viewing angle characteristics than that in the normally scattering (NS) PDLC.

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

A Study of Thermo-rheological Behaviour from Long Term Responses of Solid Composite Propellant (고체 추진제 장시간 물성거동 반응 연구)

  • Ryu, Taeha;Kim, Nakhyun;Khil, Taeock;Choi, Yongkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • Structural integrity of solid rocket depends on the residual reactions between constituents of its composition(post cure, migration etc.), the oxygen(or anti-oxydent) in the free volume and humidity (desiccant) under the perfect sealed condition. Mechanical Properties of composite solid propellant arising from those factors are very complex. Moreover the propulsion are faced with thermal loads from diurnal & seasonal cycle till firing. In this study, the fast evaluation method of long term mechanical properties is suggested based on Thermo-Rheological Simplicity from curing oven to cool-down stage in view point of thermal stabilization. For this subject, endurance tester having temperature control capability are devised. From the results from incremental load and strain, non-linear characteristics are discussed.

Effect of TESPT Silane Coupling Agent on Mechanical Properties of Precipitated Silica Filled NBR Compound for Oil Seal (TESPT 실란커플링제가 침전 실리카로 보강된 오일씰용 NBR복합소재의 기계적 물성에 미치는 영향)

  • Lee, Young-Seok;Hwang, Ki-Seob;Lee, Jong-Cheol;Kim, Tae-Geun;Ha, Ki-Ryong
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.45-53
    • /
    • 2011
  • The effect of the silane coupling agent, bis(triethoxysilypropyl)tetrasulfide (TESPT), on mechanical properties of a silica-filled NBR compound for oilseal was investigated. Curing behavior and crosslinking density of the compounds were measured using ODR (oscillating disk rheometer) and swelling ratio in toluene. UTM (universal testing machine) and shore A hardness tester were used in order to study the characteristics of mechanical properties of original vulcanizates and aged ones with heated air and ASTM No. 3. oil. Recovery of elasticity which influences the performance and service life of oilseal was investigated by giving bending deformation to vulcanizates in aging condition. After bending aging test, recovery distance was measured and calculated angle of recovery from it. TR (temperature retraction) test was performed on these vulcanizates to determine the low temperature recovery behavior. Wear resistance was measured by Taber type abrasion tester. In addition, SEM was used to characterize the morphology of the worn surface of vulcanizates. The result showed that addition of TESPT into silica-filled compound improves not only compound flow-ability, interaction between NBR and silica and crosslinking density, but also hardness, 100% modulus, recovery of elasticity, wear resistance, heat resistance and ASTM No.3 oil resistance of vulcanizates.

Effect of storage condition of resin cement on shear bond strength of the orthodontic bracket (레진시멘트의 보관 조건이 치열교정용 브라켓의 전단접착강도에 미치는 영향)

  • Seul-Gi, Yi;Jin-Woo, Kim;Se-Hee, Park;Yoon, Lee;Eung-Hyun, Kim;Kyung-Mo, Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.189-195
    • /
    • 2022
  • Purpose: For orthodontic bracket bonding, light curing resin cement is widely used because the process is convenient, and it can be polymerized at the desired time. This study compared the difference of bonding strength of orthodontic resin cement according to storage condition. Materials and Methods: After acid etching the bovine enamel surface with 37% phosphoric acid, 15 orthodontic brackets for mandible incisors were bonded with Ortho Connect and Orthomite LC according to following three conditions; 1) Immediate after 4℃ refrigeration for 3 months (IR), 2) One day room temperature after 4℃ refrigeration for 3 months (OR), 3) Room temperature for 3 months (RT). The shear bond strength was measured with a universal material tester and failure pattern of the specimen was observed. Two-way ANOVA and One-way ANOVA were used at the 95% significance level. Results: Ortho Connect that was applied immediately after refrigeration showed the maximum shear bond strength. Orthomite that was applied immediately after refrigeration showed the lowest shear bond strength, and the group stored at room temperature for three months showed the highest shear bond strength, and the difference between the two groups was significant. Conclusion: Ortho Connect can be used without worrying about bond strength even if it is used immediately after refrigeration, but Orthomite should be kept at room temperature sufficiently after refrigeration.

The studies on wrinkle recovery improvement for silk fabrics (견직물의 방추성 개선연구)

  • 김병호;정진영
    • Journal of Sericultural and Entomological Science
    • /
    • no.11
    • /
    • pp.23-29
    • /
    • 1970
  • This experiment is to improve the wrinkle recovery (W.R.) of silk fabrics. The silk fabrics is creased very well, and the crease is the serious defection of it. This experiment is to improve the nature by use of formaldehyde on fabrics. The reagents used were HCl, CH$_3$COOH, CaC$_2$, HCHO, Na$_2$CO$_3$, NH$_4$OH, NaOH and NaHCO$_3$. The silk fabrics was treated, to compare 1 he influence of conditions, by varying the quantities of reagents and the temperature of solution, and the reaction time. The cotton fabrics and the viscose rayon were sunk with the silk at the same condition to be compared the influence. 1) Those of the most suitable temperature to improve for the better W.R. are 75$^{\circ}C$ for silk, 35-45$^{\circ}C$ for cotton, and no particular temperature under 75$^{\circ}C$ for viscose rayon. 2) The W.R. improvements after treated at the temperature of 1) were 11% for silk and 33.4% for cotton. 3) There are the best treating time for every fabrics. They were 60 to 90 min. for viscose rayon when HAC Ras used for solvent. It took, however, 60min. of the best time for silk, 120 min. for cotton, and 40 min. for viscose rayon when acetic anhydride instead of HAC was used. 4) It was possible to improve 16.6% of W.R. for silk at the most suitable treating time, 25.0% for cotton, and 13.3% for viscose rayon. 5) Acetic anhydride was rather more effective to improve W.R. of both silk and viscose rayon than HAC. 6) Treating time was also shorter in case of using acetic anhydride than HAC. 7) The improvement of W.R. were 8.3% for silk at the 10 to 14 ml. of HCHO the best volume, 21. 5% for cotton at 18m!. of HCHO, and 70% of for viscose rayon at 14 to 18ml. of HCHO. 8) The most effective quantity of HCI is 14 ml. for both silk and cotton. The W.R. improvement of silk was 22.2%, and that of cotton 19.5%. 9) The W.R. of 83.3% the best for silk and 61. 6% for cotton were gained when 4.2gr. of NaHCO$_3$ brings down the percent of W.R. for both silk and cotton. 10) The more NaOH and NH$_4$OH as neutralizing agents, the less effectivity of W.R. until the quantities of the reagents are reached to a special range which are 3. 3m!. for silk and 3.3-6.6 ml. for cotton, and then we can see the W.R. increasing as the quantities of reagents are increased. These facts were evident in case of silk and cotton. We can also see with this fact that the reminder of 〔OH$\^$-/〕 neutralizing 〔CH$\^$+/〕in solution makes it possible to treat formaldehyde on fabrics. 11) Low curing temperature was comparatively better for silk, and high temperature better for cotton. 12) The result of this experiment shows that the Improvement of W.R. for silk was possible to 94% which means 22% W.R. increase compared to the untreated silk. This effect also shows that the improvement to W '||'&'||' W (wash and wear) of silk will be possible.

  • PDF