• 제목/요약/키워드: Curing solution

검색결과 287건 처리시간 0.026초

제 2 급 와동에 충전된 Compome의 미세누출에 관한 연구 (MICROLEAKAGE OF COMPOMER IN CLASS II CAVITY)

  • 임재훈;조용범
    • Restorative Dentistry and Endodontics
    • /
    • 제24권2호
    • /
    • pp.346-355
    • /
    • 1999
  • To evaluate the micro leakage of compomer, 4 materials were divided into 4 groups of 15 cavities each.(Group 1: Z-100, Group 2: Dyarct AP, Group 3: Fuji II LC, Group 4: Compoglass) After the class II cavities were prepared using carbide bur No. 553, all specimen were restored by incremental filling technique. In group 3, Z-100 was filled with a base of a light curing glass-ionomer. After 7 days, all specimens were thermocycled between $5^{\circ}C$ and $55^{\circ}C$ for 500 cycles, followed by placement in 50% silver nitrate dye for 2 hours at $37^{\circ}C$. After rinsed in distilled water, these teeth were immersed in photodeveloping solution and exposed to fluorescent light for 6 hours. Teeth were then washed in distilled water to remove the photodeveloping solution, sectioned mesio-distally and evaluated. The results were as follows : 1. In the cervical portion, there was significant difference between Fuji II LC and other groups(Z-100, Dyract AP, Compoglass), Fuji II LC had the least value.(p<0.05) 2. In the cervical portion, there was not significant difference among Dyract AP, Z-100 and Compoglass. 3. In the occlusal portion, there was not significant difference among Dyract AP, Z-100 and Compoglass. From the results above, In enamel, microleakage of compomer such as Dyract AP and Compoglass resemble to that of composite resin. It is thought that it is due to characteristics of composite resin portion of compomer. But in dentin, microleakage of compomer is higher than that of resin modified glass ionomer cement, it is thought that in compomer, acid-base reaction is not developed with dentin.

  • PDF

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

세척 용액 및 세척 방법이 3D 프린팅 임시수복용 레진의 굴곡강도에 미치는 영향 (Effect of Washing Solvent and Washing Method on Flexural Strength of 3D-Printed Temporary Resin Material)

  • 김해봄;최재원
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.389-395
    • /
    • 2024
  • The purpose of this study was to evaluate the effect of different washing solvents and washing methods on the flexural strength of 3D printed temporary resin. A bar(25 × 2 × 2 mm) was produced with a layer thickness of 50 ㎛ using an LCD-type 3D printer and divided into 15 groups(n = 10, each) according to washing solution(IPA; 99% isopropyl alcohol, TPM; 93% Tripropylene glycol monomethylether, ETL; Ethanol, TWC; Twin 3D Cleaner, and DNC; DIO navi Cleaner) and washing method(Dip; Dip washing, Ultra; Ultrasonic washing, and Auto; Automated washing). All groups were washed for 5 minutes, and post-cured for 5 minutes using a UV LED light curing machine. The Flexural strength was measured using a three-point bending test using a universal testing machine. For statistical analysis, one-way ANOVA, Tukey HSD post hoc test, Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(𝛼=.05) were performed depending on whether the normality test was satisfied. In all washing solvents except TPM and DNC, the Dip group showed the lowest flexural strength values, while the Auto group showed the highest flexural strength values except for DNC. Additionally, the washing solution showed completely different flexural strength values depending on the washing method.

Evaluation of the grouting in the sandy ground using bio injection material

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.739-752
    • /
    • 2017
  • This study was intended to evaluate the improved strength of the ground by applying the bio grouting method to a loose sandy ground. The injection material was prepared in the form of cement-like powder, with the bio injection material produced by microbial reactions. The grouting test was conducted under the conditions similar to the field where the bio injection material can be applied. In addition, the injection materials (cement and sodium silicate No. 3) used for Labile Waterglass (LW) method and the conventional grouting methodwere prepared through a two-solution one-step process. The injection into the specimens was done at a pressure of 150 kPa and then, with a bender element, their moduliof elasticity were measured on the 7th, 14th, 21st and 28th curingdays to analyze their strengths according to the duration of curing. It was confirmed that in all injection materials the moduli of elasticity increased over time. In particular, when 30% of the bio injection material was added to 100% cement, the modulus of elasticity tended to increase by about 15%. This confirmed that the applicability became higher when the bio injection material was used in place of the conventional sodium silicate.

CSA계 팽창재료의 수화특성 (Hydration of Expansive Materials with CSA-System)

  • 정성철;송명신;이경희;한천구
    • 콘크리트학회논문집
    • /
    • 제14권5호
    • /
    • pp.631-637
    • /
    • 2002
  • This paper deals with hydration properties of the OPC with CSA-system expansive materials. In OPC using CSA, that was formed monosulfate for the main part. but In OPCs using CSA and gypsum, using CSA and gypsum and lime, that were formed ettringite for the main part. On the shrinkage ratio, the former is larger than the latter And CSA-system with gypsum and lime is smallest of all systems. According to dimension of shrinkage ratios are as follows; OPC using CSA only> OPC only> OPC using CSA and gypsum> OPC using CSA, gypsum and lime. And "R"s are 0.32, 0.37, 0.8, 0.8, 0.8 each others. In OPC with CSA-system expansive materials, we know that expansive properties were depend upon the value of "R". "R" means supplying quantities about demanding quantities for ettringite. In the case of expansive materials with CSA-system and lime, it is to be rich Ca(OH)$_2$ in the solution. so, it is formed small ettringite as the needle shapes. they are contribute to expansive.

알루미노 실리케이트계 지오폴리머의 압축강도에 미치는 알카리 활성화제의 영향 (Influence of Alkaline-activator Content on the Compressive Strength of Aluminosilicate-based Geopolymer)

  • 김진태;서동석;김갑중;이종국
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.216-222
    • /
    • 2010
  • Portland cement has been restricted in applications to ecological area because of its environmental harmfulness and the $CO_2$ emission during a production process. Geopolymer materials attract some attention as an inorganic binder due to their superior mechanical and eco-friendly properties. In this study, geopolymer-based cement was prepared by using aluminosilicate minerals (flyash, meta-kaolin) with alkaline-activators and its compressive strength with concentration of alkaline-activators was investigated. Aluminosilicate-based geopolymers were obtained by mixing aluminosilicate minerals, alkaline solution (NaOH or KOH with different concentration) and water-glass under the vigorous stirring for 20 min. Compressive strength after curing at $30^{\circ}C$ for 3 days increased with the concentration of alkaline-activator due to the enhanced polymerization of the aluminosilicate materials and dense microstructure. Aluminosilicate-based geopolymer cement using KOH as an alkaline-activator showed high compressive strength compared with NaOH activator. In addition, geopolymer cement using fly-ash as a raw material showed higher compressive strength than that of meta-kaolin.

저에너지 UV 경화형 무용제 소재 개발 (Solventless UV Curable Material for Low Cost System)

  • 김광인;이주헌;이현주;한학수
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.77-84
    • /
    • 2017
  • In this study, Poly-urethane acrylate (PUA) was synthesized by the reaction between Polycaprolactonetriol (PCLT) and Isophorone dissocyanate (IPDI) and hybridized with inorganic materials. Tetraethylortho silicate (TEOS) and nano clay (Closite 20A) were used as inorganic particles. For the hybridization of TEOS with PUA, sol-gel method is used, in which TEOS is made into spherical particle in the firsthand. In the case of Nano clay, hybridization is carried out through the dispersion as Nano clay has a layered structure. The solution of PUA hybrid was made into a film after UV curing and its thermo and electrical properties were measured. The experimental analysis and result demonstrate that the PUA hybrid shows an improved thermal properties and lower dielectric constant than that of the non-hybrid PUA. The trend of improved properties was different depending on structure of inorganic materials.

Succinic Acid 처리면포의 역학 특성 - 인열강도 - (Mechanical Properties of Cotton Fabric Treated with Succinic Acid - Tear Strength -)

  • 강인숙;배현숙
    • 한국염색가공학회지
    • /
    • 제21권3호
    • /
    • pp.1-9
    • /
    • 2009
  • Polycarboxylics acids are used as crosslinking agents for cotton cellulose to produce durable finished press cotton fabric. It has been observed that the strength of the cotton fabric treated with polycarboxylic acids showed significant reduction as a result of the crosslinking process. The effect of acid-catalyzed depolymerization on the tear strength of cotton fabric is investigated by evaluating the cotton fabric treated by succinic acid, which does not crosslink cotton cellulose and form little ester on the cotton fabric. We find that the tear strength of cotton fabric treated with succinic acid decreases at elevated temperature due to acid-catalyzed depolymerization of cellulose. The magnitude of fabric strength reduction increases as the acid concentration increases. At a constant acid concentration, it increases as the curing temperature and time increases. It decreases as the pH of the acid solution increases. We also find that the dissociation constant of an acid also has a significant effect on the fabric strength reduction. The magnitude of fabric tear strength reduction increases as the acid dissociation constant decreases.

Poly[N-(formyloxyphenyl)maleimide] 고분자의 합성과 자외선에 대한 반응특성 (Synthesis and Photosensitive Properties of Poly[N-(formyloxyphenyl)maleimide] Containing Photosensitive Groups)

  • 김상민
    • 한국포장학회지
    • /
    • 제10권1호
    • /
    • pp.55-62
    • /
    • 2004
  • Synthesis of poly[N-(formyloxyphenyl)maleimide](PFOMI) as photopolymer were investigated with various kinds of photosensitive groups. Generally, photopolyimide have some deficiencies in solubility, sensitivity, reserve stability of the photosensitive solution, and the precision of image pattern. The study has been required on those polymers which have high glass transition temperature and photo efficiency, and low dielectricity. The existing condensation resins require high curing temperature and perfect elimination of subreacted materials that are produced during the process after irradiation and various membrane damages such as the deformation and contraction in image pattern cure. In this study poly[N-(hydroxyphenyl)maleimide](PHPMI) was synthesized. The PHPMI were analyzed by H-NMR and FT-IR. The measured number average molecular weight of PHPMI was produced was $1.06{\times}10^4$. Poly[N-(formyloxyphenyl)maleimide](PFOMI) as a type of photo-Fries rearrangement was synthesized by NHPMI and formic acid followed by radical polymerization. PFOMI was analyzed by FT-IR, and photocharacteristics was investgated by UV spectra and FT-IR before and after UV irradiation. Based on the image characteristics of PFOMI measured from optical micrographs, it was formed that the resolution of positive type PFOMI was $0.5{\mu}m$.

  • PDF

도시재생을 위한 근대건축물의 공간적 재생 특성에 관한 연구 (A Study on the Spatial Regeneration Characteristics of Modern Architecture for Urban Regeneration)

  • 김정곤;뇌호원;이장걸
    • 한국실내디자인학회논문집
    • /
    • 제27권1호
    • /
    • pp.21-28
    • /
    • 2018
  • Environmental issues had arisen following industrialization with rapid physical growth of city and its consequences: widened metropolitan areas, uncontrolled reconstructions of new metropolitan areas, many social issues, such as declines of existing metropolitan areas. Due to these issues, new development policies have been made in order to find identities and reconstruct new images of cities. This research aims to remind the meaning of conservation of modern construction and building re-use, and to identify values of modern architectures in the context of a city. Regeneration of cities is not only finding national identities, but also expecting to increase inflow of foreign travellers. However, this regeneration hasn't stayed sustainable, focusing only on short-term curing of the problem in limited areas. This work analyzes cases of modern architecture, historic buildings from various cultures: Western, Japanese, Chinese. The result of the analysis shows that the value of existing buildings and citizen participation is necessary to revitalize cities. Four characteristics have been also identified: historic relationship, spatial identity, spatial presence, and approachable efficiency. For a potential solution, cities need to be viewed from multiple perspectives to find a method to generate new vitality for a city whose values should be recognized as an asset through sustainable re-use, by transforming modern construction as a heritage.