• Title/Summary/Keyword: Curing cycle

Search Result 79, Processing Time 0.024 seconds

Wear Of Resin Composites Polymerized By Conventional Halogen Light Curing And Light Emitting Diodes Curing Units (HALOGEN LIGHT CURING UNIT 과 LIGHT EMITTING DIODES CURING UNIT 을 이용하여 중합되어진 복합레진의 마모 특성 비교)

  • 이권용;김환;박성호;정일영;전승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1057-1060
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.

  • PDF

A Study on the Effect of Accelerated Curing on 28-Days Compressive Strength of Concrete (촉진양생이 콘크리트의 28일 압축강도에 미치는 영향에 관한 연구)

  • 최세규;유승룡;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • The pulished works on Accelerated Curing Effect were generally performed around from 1960 to 1970th century for 18 to 24 hours - total curing periods. It is not possible to define the effect of temperature rise because those results were obtaine mainly by using the manually operated steam-curing tank. Thus, it may not be available to apply those data immediately on the domestic PC wall production line. The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 day of water curing may be as follows: the presteaming period does not affect seriously and less than$30^{circ}C/hr$- the rate of temperature rise andless than $82^{circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

실험계획법을 이용한 탄소섬유/페놀수지의 강화 cycle연구

  • Ha, Heon-Seung;Lee, Jin-Yong;Jo, Dong-Hwan;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.514-520
    • /
    • 1993
  • In this paper the cure cycle of carbon fiber/phenolic resin was investigated by the Taguchi Method in an experimental design. Experiments were systematically performed using $L_{18}(2^1 \times 3_7)$ orthorgonal array table of the experimental design. In the experimental design, eight compression molding parameters (heating rate, pressing temperature, pressing rate, molding pressure, curing temperature, dwell time at curing temperature, cooling rate and degassing) were considered and the effects of the parameters on the flexural strength and the apparent porosity of carbon fiber/phenolic composites were investigated. The analysis of variance for the experimental results indicated that molding pressure and curing temperature are the most significant parmeters in the flexural strength and the apparent porosity of carbon fiber/phenolic resin composites, respectively.

  • PDF

Wear of Resin Composites Polymerized by Conventional Halogen Light Curing and Light Emitting Diodes Curing Units (Halogen Light Curing Unit과 Light Emitting Diodes Curing Unit을 이용하여 중합되어진 복합레진의 마멸 특성 비교)

  • Lee Kwon-Yong;Kim Hwan;Park Sung-Ho;Jung Il-Young;Jeon Seung-Beom
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.268-271
    • /
    • 2005
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15N contact force in a reciprocal sliding motion of sliding distance of 10mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

Effect of Cyclic Change of Wet Bulb Temperature During Yellowing Stage on Physical Properties of Flue-Cured Tobacco (황색종 연초 황변기 cyclic건조가 건조엽의 물리성에 미치는 영향)

  • Lee, Chul-Hwan;Jin, Jeong-Eui;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • In the flue curing process, the wet bulb temperature is usually controlled at a constant level. To improve the quality of flue cured leaves, we studied the effect of the cyclic change of wet bulb temperature at the yellowing stage of flue curing on physical properties of cured leaves. The wet bulb temperature was automatically controlled between preset high (38℃) and low point (35℃) every one hour cyclically. As a result, the acceleration of the increase in the physical properties of cured leaves were observed. The leaves cured by this method were more or less orange in color, better bodied, and less brittle compared with the leaves produced by conventional curing. However, the leaves cured by this method had a little sharpness and harshness. As to the physical properties, there was decreased in occurrence of flat leaves than that of conventional ones. On the other hand, in case of cyclic curing method, increase of price per kg reached to 2-3% compared with those of conventional ones.

  • PDF

Effects of pre-curing process on improvement of the compressive strength of IGCC-slag-based-geopolymer (IGCC 용융 슬래그로 제조된 지오폴리머의 강도증진에 Pre-curing이 미치는 영향)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.295-302
    • /
    • 2017
  • In this study, the effect of pre-curing process on the enhancement of mechanical properties of IGCC-slag-based-geopolymer was studied. Pre-curing is a process in which the green geopolymer is left at room temperature for a certain period of time prior to the high-temperature curing, and it is known as increasing the strength of a specimen. Therefore, in this experiment, the compressive strength of the geopolymers was measured according to various pre-curing conditions, and microstructure and crystal phase changes were observed by SEM and XRD, respectively. The W/S ratio was determined to be 0.26, which can offer the maximum geopolymer strength with easy molding ability, and the concentration of the alkali solution was 15 M. Pre-curing was performed at room temperature for 0 to 27 days. Compressive strength of the geopolymer made with pre-curing process increased by 36~87 % compared with the specimens made with no pre-curing process. Those improved compressive strength for the pre-cured geopolymer was confirmed owing to promotion effect of pre-curing process on generation of C-S-H gel and zeolite phases, which were analyzed using by XRD and SEM measurement.

Effect of polymerization method and fabrication method on occlusal vertical dimension and occlusal contacts of complete-arch prosthesis

  • Lima, Ana Paula Barbosa;Vitti, Rafael Pino;Amaral, Marina;Neves, Ana Christina Claro;Concilio, Lais Regiane da Silva
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.122-127
    • /
    • 2018
  • PURPOSE. This study evaluated the dimensional stability of a complete-arch prosthesis processed by conventional method in water bath or microwave energy and polymerized by two different curing cycles. MATERIALS AND METHODS. Forty maxillary complete-arch prostheses were randomly divided into four groups (n = 10): MW1 - acrylic resin cured by one microwave cycle; MW2 - acrylic resin cured by two microwave cycles: WB1 - conventional acrylic resin polymerized using one curing cycle in a water bath; WB2 - conventional acrylic resin polymerized using two curing cycles in a water bath. For evaluation of dimensional stability, occlusal vertical dimension (OVD) and area of contact points were measured in two different measurement times: before and after the polymerization method. A digital caliper was used for OVD measurement. Occlusal contact registration strips were used between maxillary and mandibular dentures to measure the contact points. The images were measured using the software IpWin32, and the differences before and after the polymerization methods were calculated. The data were statistically analyzed using the one-way ANOVA and Tukey test (${\alpha}=.05$). RESULTS. The results demonstrated significant statistical differences for OVD between different measurement times for all groups. MW1 presented the highest OVD values, while WB2 had the lowest OVD values (P<.05). No statistical differences were found for area of contact points among the groups (P=.7150). CONCLUSION. The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD of complete-arch prosthesis.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

Analysis of Thermal Residual Stress in Composite Patches (복합재 패춰의 열잔류응력 해석)

  • 김위대;김난호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF

Properties of Lightweight Foamed Concrete According to Animality Protein Foaming Agent Type (동물성 기포제 종류별 경량기포 콘크리트의 특성)

  • Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.34-35
    • /
    • 2019
  • In recent years, the construction industry has also applied the dry method that can be assembled in the field by industrialization and factory production, which is free from climatic effects and can reduce the cost due to mass production and simplify the work in the field. Among the building materials used in this dry method, ALC products are made by mixing calcium oxide, gypsum, cement, and water in silica and putting them in an autoclave to create voids in the interior through steam curing at high temperature and pressure. But it requires curing cycle conditions of warming, isothermal, and temperature curing. It depends on the performance of the product depending on the curing conditions, the economical efficiency due to high oil prices, the emission of greenhouse gases by the use of fossil fuels. Experiments were conducted to select an appropriate animal protein foam for lightweight foamed concrete block which was cured by applying a prefilling method to replace existing ALC products. As a result of investigating the characteristics of lightweight foamed concrete by type of animal protein foam, it is considered that FP3 is most suitable for manufacturing lightweight foamed concrete block.

  • PDF