• Title/Summary/Keyword: Curing condition

Search Result 647, Processing Time 0.021 seconds

A Study on Development of Curing Apparatus for In-place Standard Curing Specimen (현장 표준양생 공시체 관리함의 개발에 관한 연구)

  • 김경민;전충근;손성운;김기철;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.97-100
    • /
    • 2004
  • In-place curing box for specimens is used to cure the compressive strength specimens for control in place concrete. The box if composed of insulating chamber maintaining 20$\pm$3$^{\circ}C$ of temperature, in this paper, strength and temperature history of specimens cured at in plate curing box are investigated to verify field applicability. According to test results, air temperature at measured time shows large temperature variation and below zero, whereas, inside temperature of in place curing box maintains within 20$\pm$3$^{\circ}C$ due to temperature control function. For curing condition. temperature of specimens cured at outside shows large temperature deviation. specimens lured at in-place curing box is not affected by outer temperature.

  • PDF

An experimental Study for the Maximun Curing Temperature Effect on the Freezing and Thawing of Steam Curing Concrete (증기양생콘크리트의 최고양생온도변화가 콘크리트의 동결융해저항성에 미치는 영향)

  • Youn, Suk;Choi, Se-Gyu;Kim, Dong-Sin;Yu, Sung-Yong;Kim, Saeng-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.170-176
    • /
    • 1997
  • The published works on steam curing effect have been generally concentrated on the subject, "compressive strength". However a practical test for durable steam curing concrete products has not been performed in domestic. In this study, the maximum temperature of steam is considered as a major variable to investigate the freezing and thawing resistance of the steam curing concrete. All of the specimen were cured for 24 hours which included presteaming 4 hour. Finally we found that the most effective curing condition is the case of one-day and 14-day specimens after the 24 hours steam curing at $74^{\cire}C$ degree curing temperature. It is also found that the durability of one-day samples are much weaker than those of 14-day samples. Consequently, we can conclude that the samples that produced immediately after a steam curing are more possible to deteriorate from the freezing and thawing environment.vironment.

  • PDF

A Study on the Effects of Curing Temperature for Compressive Strength of High Performance Concrete (양생온도 변화가 고성능 콘크리트의 압축강도에 미치는 영향에 관한 연구)

  • Ro, In-Cheul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • The object of this study is to define the characteristics of high performance concrete with varing compressive strength of concrete and curing temperature. The major test variables are 1) high strength concrete(500kg/$cm^2$) and ordinary strength concrete(240kg/$cm^2$) compressive strength, 2) curing temperature and condition, 3) concrete curing age, 4) three types of cement. From the test results were shown that curing temperature and curing conditions were also very effective for high strength concrete and ordinary strength concrete, and concrete were largely effected by cement type and temperature during the hydration reaction process. This paper describes the effect of curing temperature for strength and characteristics of high performance concrete.

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

Residual Stress Comparison of Type III Hydrogen Tank by Curing Conditions (Type III 수소탱크 경화조건에 따른 잔류응력 비교)

  • Yong-Chul Shin
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • Since the residual stress of hydrogen tank is directly related to durability, it is very important to reduce it for safety. Type II~IV hydrogen tank are manufactured by the filament winding method, in which the fiber is impregnated with resin and wound around the liner. Residual stress in composite is affected by curing conditions and fiber tension etc. In this study, the effect of curing conditions on residual stress was analyzed when manufacturing a Type III hydrogen tank using carbon fiber filament winding process. First, the curing behavior of the epoxy resin was analyzed using a differential scanning calorimetry. Through this, the curing temperature was set to 140℃. During the same curing time, the specimens were cured under 2-stage curing condition that reached 140℃ earlier and a 4-stage curing condition that reached 140℃ later, respectively. After curing, the residual stress of the composite material was measured by the ring slitting method, and the experimental values were compared with numerical values. It was confirmed that there was a significant difference in residual stress according to the optimization of curing conditions.

An Experimental Study on the Characteristics of Compressive Strength in Cement Mortar under High Temperature conditions in an Early Age (초기 고온이력이 시멘트 모르터의 강도발현에 미치는 영향에 관한 연구)

  • Kim Young-Joo;Choi Maeng-Ki;Gong Min-Ho;Park Hee-Gon;Kim Kwang-Ki;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.45-48
    • /
    • 2005
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of qualify control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

A Study on the effect of Accelerated Curing on Hydration and Compressive Strength of Concrete (촉진양생이 콘크리트의 수화 및 압축강도에 미치는 영향에 관한 연구)

  • 김생빈;유승룡;김동신;최세규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.107-111
    • /
    • 1996
  • The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 days of water curing may be as follwings; the presteaming period does not affect seriously and less than $30^{\circ}C$/hr-the rate of temperature rise and less than $82^{\circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

  • PDF

A Study on the Physical Property of Epoxy Resin Due to After-Curing Condition (후경화 조건에 따른 에폭시 수지의 물성에 관한 연구)

  • Han, Jeong-Young;Kim, Myung-Hun;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.976-981
    • /
    • 2012
  • In this study, hardness, microstructure and temperature of glass transition are measured respectively by using SEM (Scanning electron microscope) and DSC (Differential scanning calorimeter) to analyze the effects on material properties by after-curing in the epoxy resin. As the result of hardness test according to the after-curing conditions, the higher the temperature of after-curing, hardness and heat resistance are, the higher hardness is. As a result of microstructure for each specimen by SEM, it could be confirmed that the specimen with after-curing has more dense fracture surface. It is also found that temperatures of glass transitions by DSC are comparatively higher in the specimens with after-curing, and the differences between after-curing conditions are negligible.

Evaluation of mechanical properties of several dual-cure resin cements by curing modes (중합방법에 따른 여러 이중중합 레진 시멘트의 기계적 성질 평가)

  • Kim, Soo-Yeon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the mechanical properties of several dual-cure cements by different curing modes. Materials and Methods: One resin-modified glass ionomer cement (FujiCEM 2), two conventional dual-cure resin cements (RelyX ARC, Multilink N), and two dual-cure self-adhesive resin cements (RelyX U200, G-CEM LinkAce) were used. To evaluate the influence of the curing methods, each cements divided into four conditions (n = 20); Condition 1: self-curing for 10 minutes, Condition 2: immediate after 20 seconds light-curing, Condition 3: 24 hours after self-curing, Condition 4: 24 hours after light-curing. The compressive strength and diametral tensile strength were measured with a universal testing machine. All data were statistically analyzed using t-test, one-way ANOVA and Scheffe's test. Results: The results showed the compressive strength and diametral tensile strength after 24 hours in all curing modes were higher than immediate except RelyX ARC light-cured and Multilink N light-cured. The FujiCEM 2 showed lowest values (P < 0.05). Conclusion: The outcome was cement-depend, but there is no significant difference about compressive strength and diametral tensile strength between dual-cure self-adhesive resin cements and conventional resin cements. And this result will be used as a base line data selecting resin cement for favorable long-term prognosis.

Strength Development of Mock-up Concrete Structure subjected to Extremely Low Temperature Condition Due to Curing Methods (극저온 조건에서의 양생방법 변화에 따른 실구조체 콘크리트의 강도발현 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.47-49
    • /
    • 2012
  • Under this study, the characteristics of concrete intensity condition following the curing method under the extremely low temperature environment have been contemplated, and as a result, in the event of insulation + heat cable curing, the intensity and accumulated temperature accomplishment period is required for two times of requiring initial frost damage prevention than the case of heating + heat insulation curing method due to the insufficient calories supplied in general.

  • PDF