• Title/Summary/Keyword: Curing age

Search Result 428, Processing Time 0.035 seconds

Mechanical Properties of Concrete with Different Curing Temperatures (양생온도변화에 따른 콘크리트의 재료역학적 특성)

  • 김진근;한상훈;양은익;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.42-47
    • /
    • 1998
  • Experimental investigation was undertaken to determine early-age strength development and the relationships between the mechanical properties of type I, V and V/fly ash cement concrete with different curing temperature. The tests for mechanical properties, i.e., compressive strength, splitting tensile strength and modulus of elasticity were carried out for type, I, V and V with 15% replacement with fly ash cement concrete. For this purpose 480 concrete cylinders cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$ were tested at ages of 1, 3, 7 and 28days. According to the experiments, the concrete subjected to high temperature at early age got greater strength at early age, however eventually lower strength at late age. The derived relationships between compressive strength and splitting tensile strength and elastic modulus of elasticity appeared to be identical for all types of cement.

  • PDF

Improved Rayleigh Wave Velocity Measurement Technique for Early-age Concrete Monitoring (초기 재령 콘크리트의 모니터링을 위한 개선된 레일리파 속도 측정 기법)

  • Shin Sung-Woo;Yun Chung-Bang;Popovics John S.;Song Won-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.97-103
    • /
    • 2006
  • A modified one-sided measurement technique is proposed for Rayleigh wave (R-wave) velocity measurement in concrete. The scattering from heterogeneity may affect the waveforms of R-waves in concrete, which may make the R-waves dispersive. Conventional one-sided techniques do not consider the scattering dispersion of R-waves in concrete. In this study, the maximum energy arrival concept is adopted to determine the wave velocity by employing its continuous wavelet transform. Experimental study was performed to show the effectiveness of the proposed method. The present method is applied to monitor the strength development of early-age concrete. A series of experiments were performed on early-age concrete specimens with various curing conditions. Results reveal that the proposed method can be effectively used to measure the R-wave velocity in concrete structures and to monitor the strength development of early-age concrete.

  • PDF

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF

Development of Efficient Curing Sheet for Thermal Insulation Curing of Concrete in Cold Weather

  • Han, Cheon-Goo;Son, Myung-Sik;Choi, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • For cold weather concreting, frost damage at early age is generated in the concrete, and problems such as delaying of setting and hardening and lowering of strength manifestation emerge due to the low outside air temperature at the early stage of pouring, making the selection of an effective curing method critically important. Unfortunately, the tent sheet currently used as the curing film for heating insulation at work sites, not only has the problems of inferior permeability and extremely deteriorated airtightness, but a phenomenon of continuous fracturing is also generated along the direction of fabric of the material itself, presenting difficult circumstances for maintaining adequate curing temperature. The aim of this study was to develop an improved bubble sheet type curing film for heating insulation of cold weather concrete by combining mesh-tarpaulin, which has excellent tension properties, with bubble sheet, which offers superior insulation performance. The analysis showed that the improved curing film in which BBS1 is stacked to MT was a suitable replacement for curing films currently in use, as it has better permeability, tension property, and insulation performance than the T type film used at work sites today.

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

Influence of curing condition and carbonation on electrical resistivity of concrete

  • Yoon, In-Seok;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.973-987
    • /
    • 2015
  • The electrical resistivity of air-dried, saturated, and carbonated concretes with different mixture proportions was monitored to evaluate and quantify the influence of the age of the specimen, carbonation, and curing condition. After 28 days of curing, four prepared specimens were stored in a vacuum chamber with 5% $CO_2$ for 330 days to make carbonated specimens. Four of the specimens were placed in water, and four specimens were cured in air until the end of the experiments. It was observed that the electrical resistivity of the carbonated specimens increased as carbonation progressed due to the decrease of porosity and the increase of hydrated products. Therefore, in order to estimate the durability of concrete, its carbonation depth was used as the measurement of electrical resistivity. Moreover, an increase of electrical resistivity for air-dried and saturated concretes was observed as a function of age of the specimen. From the relationship between chloride diffusivity provided by Yoon et al. (2007) and the measurements of electrical resistivity, it is expected that the results well be of significant use in calibrating chloride diffusivity based on regular measurements of electrical resistivity during concrete construction.

Quality Properties of Blast Furnace Slag Brick Using the Recycled Fine Aggregates Depending on Waste Oil and Curing Method (폐식용유 혼입 및 양생방법에 따른 순환잔골재 사용 고로슬래그 벽돌의 품질특성)

  • Park, Kyung-Taek;Son, Ho-Jung;Kim, Dae-Gun;Kim, Bok-Kue;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.61-62
    • /
    • 2011
  • This study reviewed the effect of W/B, WO and curing method on the quality properties of RA using the BS brick under the zero cement condition. compressive strength was found to show an increasing trend as W/B increased, but to show a improvement in case steam curing was conducted, showing a higher increase at 1 day age in comparison with 7 day age. In addition, the compressive strength on the mixing of WO didn't show any specific trend. The absorption tended to decrease as W/B increased and met the less than 10% regulation value at 30~35% W/B in case WO was used, there appeared a decrease attributable to capillary pore filling effect due to saponification. On the other hand, compressive strength increases, th absorption showed a gradually decreasing tendency.

  • PDF

Concrete Strength Prediction with Different Curing Temperatures (양생온도변화에 따른 콘크리트의 강도 예측)

  • Park, Je-Seon;Kim, Tae-Kyung;Lee, Joo-Hyung;Yun, Cheong-Ho
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.219-225
    • /
    • 1997
  • The maturity concept was adopted to predict the strength of concrete, which was subjected to several temperature levels and variable curing conditions. Penetration test and compressive test were conducted to measure the initial and final setting time and the compressible strength of concrete specimen, respectively. Also, the temperature and time were measured at some time intervals for calculating the maturity. The initial and final setting were delayed as the w/c ratio increased and curing temperature decreased. The relationships at the relative strength and the equivalent age were proposed at different w/c ratio for the several temperature curing conditions, and these were applied for the variable curing conditions.

  • PDF

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Frost Damage at Early Age (초기동해를 입은 고로슬래그 콘크리트의 강도발현 특성에 관한 실험적 연구)

  • 최성우;반성수;최봉주;유득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.629-634
    • /
    • 2001
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-furnace Slag, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And that properties is not connected with the frost cause.

  • PDF

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Time&Period of Frost Damage (동해시점 및 지속시간에 따른 고로슬래그콘크리트의 강도발현 특성에 관한 실험적 연구)

  • 반성수;이민호;최성우;유득현;최봉주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.143-148
    • /
    • 2002
  • Recently, to consider economical and constructive aspect, Usage of Admixture, like Blast-Furnace Slag and Fly-Ash, are increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to time and period of frost damage for early age curing. According to this study, if early age curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And that properties is not connected with the frost cause.

  • PDF