• Title/Summary/Keyword: Curing Model

Search Result 321, Processing Time 0.03 seconds

A Hydration based Model for Chloride Penetration into Slag blended High Performance Concrete

  • Shin, Ki-Su;Park, Ki-Bong;Wang, Xiao-Yong
    • Architectural research
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • To improve the chloride ingress resistance of concrete, slag is widely used as a mineral admixture in concrete industry. And currently, most of experimental investigations about non steady state diffusion tests of chloride penetration are started after four weeks standard curing of concrete. For slag blended concrete, during submerged chloride penetration tests periods, binder reaction proceeds continuously, and chloride diffusivity decreases. However, so far the dependence of chloride ingress on curing ages are not detailed considered. To address this disadvantage, this paper shows a numerical procedure to analyze simultaneously binder hydration reactions and chloride ion penetration process. First, using a slag blended cement hydration model, degree of reactions of binders, combined water, and capillary porosity of hardening blended concrete are determined. Second, the dependences of chloride diffusivity on capillary porosity of slag blended concrete are clarified. Third, by considering time dependent chloride diffusivity and surface chloride content, chloride penetration profiles in hardening concrete are calculated. The proposed prediction model is verified through chloride immersion penetration test results of concrete with different water to binder ratios and slag contents.

Prediction of Mechanical Properties of Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 콘크리트의 재료역학적 성질의 예측)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.173-178
    • /
    • 2000
  • New prediction model is investigated estimating splitting tensile strength and modulus of elasticity with curing temperature and aging. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values. New prediction model well estimated splittinge tensile strength and elastic modulus as well as compressive strength.

  • PDF

Role of F/P Ratio on Curing Behavior for Phenolic Resol and Novolac Resins by FT-IR (FT-IR 분석에 의한 레졸과 노블락 페놀 수지의 경화거동에 미치는 F/P 몰비)

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.16-24
    • /
    • 2001
  • The curing behavior of a phenolic resin (F/p: 1.3, 1.9, 2.5 for resol resin, F/P: 0.5, 0.7, 0.9 for novolac resin) has been studied by FT-IR spectroscopy. In this study is to synthesis of resol and novolac type phenolic resin with different F/P molar ratios and to compare the level of cure at different curing temperature conditions ($130^{\circ}C$, $160^{\circ}C$, $180^{\circ}C$ for resol resin, $160^{\circ}C$, $170^{\circ}C$, $180^{\circ}C$ for novolac resin) for 3, 5, 7, 10, 20, and 60 (min.), respectively. The conversion (${\alpha}$) was determined by the ratio of the peak area with time to the peak area of non-baked phenolic QH ($3300cm^{-1}$) at spectra. It is concluded that the initial curing rate of resol and novolac resin was increased as the molar ratio of formaldehyde/phenol increased and as the curing temperature of resin increased. According to the analysis was by the homogenous first-order model, the initial curing rate of resol and novolac resin was increased as the molar ratio of formaIdehyde/phenol increased at specific curing temperature.

  • PDF

Strength Development of the Concrete at Early Age subjected to Low Temperature depending on Admixture Types (혼화재 종류 변화에 따른 저온조건하 콘크리트의 초기강도 발현 특성)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.145-151
    • /
    • 2007
  • In this paper, tests are carried out in order to investigate the strength development of concrete under various binder types, W/B and curing temperature ranged from $5{\sim}20^{\circ}C$. Fly ash and blast furnace slag were incorporated by as much as 30%, respectively. Strength development of concrete are estimated using Logistic model and strength ratio of concrete at 28days to that at early age are also investigated. According to experimental results, it is found that good agreements are obtained between measured values and calculated ones using logistic model below $20^{\circ}C$. Strength ratio of concrete at 28days to that at early age increases in case W/B decreases and curing temperature increases. Tables and graphs for strength ratio of concrete are provided in this paper. It is capable of obtaining and predicting the periods to attain design strength by considering increment factor of strength easily with the table and graphs presented in this paper. This paper presents the reference data to decide removal time of form, time to reach target strength and strength inspection of remicon whether the test specimens meet the specified criteria of compressive strength. Multi regression models with respect to the relationship between 7days compressive strength and 28 days compressive strength depending on W/B and admixture types are presented.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Estimation of Setting Time of Cement Mortar combined with Recycled Aggregate Powder and Cement Kiln Dust based on Equivalent Age

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.87-97
    • /
    • 2012
  • This paper presents a method of estimating the setting time of cement mortar incorporating recycled aggregate powder (RP) and cement kiln dust (CKD) at various curing temperatures by applying an equivalent age method. To estimate setting time, the equivalent age using apparent activation energy (Ea) was applied. Increasing RP and CKD leads to a shortened initial and final set. Ea at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. These were estimated to be from 10~19 KJ/mol in all mixtures, which is smaller than those of conventional mixture ranging from 30~50 KJ/mol. Based on the application of Ea to Freisleben Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and RP contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing RP and CKD. A high correlation was observed between estimated setting time and measured setting time. A multiregression model was provided to determine setting time reflecting RP and CKD. Thus, the setting time estimation method studied herein can be applicable to concrete incorporating RP and CKD in the construction field.

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.