• Title/Summary/Keyword: Curing Characteristics

Search Result 798, Processing Time 0.026 seconds

Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials Synthesized by A Sol-Gel Process (졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성)

  • Han, Hung-Gu;Kong, Ho-Sung;Yoon, Eui-Sung;Yang, Seung-Ho
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.324-332
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide$(Ti(Opr^i)_4),$ zirconiumisopropoxide $(Zr(Opr^i)_4)$ and aluminumbutoxide$(Al(Obu^t)_4)$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribo-tester, and evaluated with respect to both heat-curing temperature and the time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher het-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that these results were caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C.$

Characteristics of Compressive Strength of Concrete due to Form Curing Condition (거푸집 양생 조건에 따른 콘크리트의 압축강도 특성)

  • Kim, Kyoungnam;Park, Sangyeol;Moon, Kyoungtae;Shim, Jaeyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • The time for form removal is an important factor for ensuring the safety and economical efficiency of concrete structures, because it affects the quality, period, and cost of construction. Although local specifications suggest the form curing time, there is a problem of low quality of concrete due to early removing of form. This is because they do not fully understand effect of curing condition, and they want to shorten construction period in the field. Therefore, this research evaluates the effect of curing condition according to the time for form removal by testing specimen. As a result, the concrete compressive strength at the age of 28 days decreased about 40% in the condition of form removal after 12 hours, while the strength in the condition of form removal after 28 days decreased about 7%. Finally, this paper suggests an estimating equation for the concrete compressive strength due to the time for form removal considering various curing temperatures as equivalent ages. The proposed equation can be used in the field for evaluating the strength after form removal.

AN ACCELERATED TEST FOR COLOR STABILITY AND OPACITY CHANGE OF LIGHT CURING COMPOSITE RESINS (광중합 복합레진의 색안정성 및 투명도 변화에 관한 가속시험)

  • Hwang, Inn-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.215-226
    • /
    • 1993
  • Color stability of tooth colored restorative resins is an important factor, particularly in anterior teeth restoration. The purpose of this study was to evaluate the color stability and opacity change of several light curing composite resins. Specimens of eight composite resins(Prisma AP. H., Brilliant Enamel, Charisma, Durafil, Helio Progress, Herculite XR, P-50 and Silux Plus) were divided into two groups : In Group 1, the specimens were polymerized by visible light curing unit for 60 seconds on both sides and in Group 2, the post-cured specimens were heat tempered by light/heat curing unit for 45 units(about 18 min.). All specimens were stored in distilled water at $60^{\circ}C$ for 30 days. The color characteristics($L^*,a^*,b^*$) and opacity of the specimens before and after immersion were measured by spectrocolorimetry and the total color difference(${\Delta}E^*$) and opacity change (${\Delta}Y%$) were computed. The results obtained were as follows : 1. SP and APH in both groups, DF, HP and HXR in Group 1 showed ${\Delta}E^*$-value above 2.0. 2. DF, HP, SP and HXR in Group 1 showed higher ${\Delta}E^*$-value than in Group 2, but the others had no significant difference. 3. The opacity of CH and HXR in Group 1, and of CH and BE in Group 2 decreased after immersion, while that of the others increased. 4. Opacity change of BE, P50 and HXR was significantly different between Group 1 and 2. These results suggest that color change in the post-cure heat tempered specimens by light/heat curing unit was smaller than that of the specimens polymerized by visible light curing unit. No clinically detectable opacity changes were noted for any materials in either goup.

  • PDF

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water (양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구)

  • 윤재범;고창섭;김명식;장희석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

Process Optimization of Industrial Solid Freeform Fabrication System (산업용 임의형상제작(Solid Freeform Fabrication)시스템의 공정변수 최적화)

  • Kwak, Sung-Jo;Lee, Doo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.602-609
    • /
    • 2008
  • This paper presents experimental optimization of process parameters for a newly developed SFF(Solid Freeform Fabrication) system. Two critical process parameters, layering thickness and curing period, which have a large effect on the quality of the product, are optimized through experiments. Specimens are produced using layering thicknesses of 60, 80, 100, 120, 140, and $160\;{\mu}m$ and curing periods of 0, 10, 20, and 30 minutes under the same processing conditions, i.e., build-room temperature, feed-room temperature, roller speed, laser power, scan speed, and scan spacing. The specimens are tested to compare and analyze performance indices such as thickness accuracy, flatness, stress-strain characteristics, and porosity. The experimental result indicates that layering thickness of $80{\sim}100\;{\mu}m$ and curing period of $20{\sim}30$ minutes are recommended for the developed industrial SFF system.

Stress-Strain Properties of recycled-PET Polymer Concrete (PET 재활용 폴리머 콘크리트의 응력-변형률 특성)

  • Jo, Byung-Wan;Park, Jong-Hwa;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.316-319
    • /
    • 2004
  • Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete.

  • PDF

DC Dielectric Breakdown Properties of Epoxy Composites with Variation of Additives and Curing Conditions (첨가제 및 경화조건 변화에 따른 에폭시 복합체의 DC 절연파괴특성에 관한 연구)

  • Chug, Kyu-Hee;CHoi, Woon-Shik;Wang, Jong-Bae;Kim, Hong-Chul;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.883-885
    • /
    • 1992
  • DC dielectric breakdown properties of epoxy composites with various additives rates and curing conditions were investigated at the temperature range from 20[$^{\circ}C$] to 180[$^{\circ}C$]. At low temperature an improvement of the characteristics is observed due to curing agents. The additions of filter is lower the temperature dependences of the breakdown strength. Samples treated with silan have a higher breakdown strength than non-treating filled samples.

  • PDF

A study on Fabrication of Harden Carbon for Electrical Application (전기재료장 경질탄소 제조에 관한 연구)

  • 지명학;임대영;김종옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.198-201
    • /
    • 1995
  • Carbons are the materials which are known to be usable at highest temperature in existing materials and are being increased their mechanical Properties to 2000$^{\circ}C$. They have many advantageous characteristics such as electrical and thereat conductivity. But, inspire of their properties, this materials have covalant bonding that strong1y link their atoms. the covalant bondings are too strong to occur atomic diffusions or shirinkages during the sintering. because of this sintering mechanism, carbon materials must be produced by using some binders. To obtain a good carton material, it is important that the function of binders. And to obtain a good binder, it reqired the additive which can improve the properties of the binder, so called curing agent. In this study, we make a curing agent that can improve the properties of binders to evaluate the yield of carbon from binders and to shirink the substrate. and compared the carbon materials treated with the binder containing the curing agent to that treated with common binder.

  • PDF