• Title/Summary/Keyword: Cumulus Expansion

Search Result 50, Processing Time 0.018 seconds

Regulation of Cumulus Expansion of Porcine Cumulus-Oocyte Complexes in vitro: Involvement of cAMP and Calcium (한국인에 대한 지문과 장문의 정량적 분석)

  • 황긍연
    • The Korean Journal of Zoology
    • /
    • v.30 no.2
    • /
    • pp.117-139
    • /
    • 1987
  • The present experiments were carried out to investigate the mode of cAMP regulation of cumulus expansion in pig. Intracellular level of cAMP in the cumulus cells was modulated by culturing porcine cumulus oocyte complexes (COC's) with forskolin, an adenylate cyclase stimulator and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The role of calcium in the hormone induced cumulus expansion process was also studied. Forskolin in the medium stimulated cumulus expansion from the concentration of 0.01 $\mu$M and induced full expansion at l-10 $\mu$M In contrast, IBMX in the medium (20-180 $\mu$M) failed to induce the expansion. Verapamil, a calcium ion transport blocker, suppressed follicle stimulating hormone(FSH)-induced cumulus expansion in a dose dependent fashion (0.002-0. 2 mM) when the COC's were exposed to the drugs during culture period (32 hr). But verapamil did not interfere with the triggering action of FSH during early four hours of culture period. The data presented here showed that adenylate cyclase in the porcine cumulus cells may play a key role in the regulation of the intracellular cAMP level and calcium ion may be involved in the later period of cumulus expansion process.

  • PDF

Effect of Cordycepin on the Cumulus Expansion and Meiotic Maturation of Mouse Cumulus-oocyte Complexes in Vitro (Cordycepin이 생쥐의 난구세포 분산과 난자의 성숙에 미치는 영향)

  • Lee, Gy-Soog
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.13 no.2
    • /
    • pp.201-206
    • /
    • 1986
  • These experiments were conducted to know whether RNA syntheis is involved in the cumulus expansion and oocyte maturation of mouse cumulus-oocyte complexes in vitro. Mouse cumulus-oocyte complexes(COC's) were cultured in the presence of cordycepin, an inhibitior of RNA synthesis and its effect on the cumulus expansion and oocyte maturation were examined. The results were as follows. 1. Continuous presence of cordycepin in the medium(200${\mu}g/ml$) inhibited the HCG-induced cumulus cell expansion of mouse complexes. This inhibition was reversible. 2. When the COC'S were preincubated with different concentration of cordycepin plus HCG for 3 hours and then transferred to the plain medium, the HCG induced cumulus expansion was suppressed at $100{\mu}g/ml$ of cordycepin. 3. When the COC'S were cultured with cordycepin after HCG stimulation(3hrs), the cumulus expansion were not suppressed by cordycepin. 4. Oocyte meiotic maturation did not appear to be affected by cordycepin. The data presented here imply that RNA synthesis is involved in the cumulus expansion process and that mouse oocytes are more resistant to RNA synthesis inhibitor than cumulus cells.

  • PDF

Cumulus Expansion and Oocyte Maturation of Oocyte-Cumulus Complexes Isolated from Different Ages of Mice In vitro (생쥐 Age에 따른 난자-난구 복합체의 분산과 성숙에 관한 연구)

  • Lee, Won-Kyo;Kwon, Hyuk-Bang
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.13 no.2
    • /
    • pp.195-200
    • /
    • 1986
  • In order to know when the cumulus cells of mouse follicles get ability to expand in vitro, the oocyte cumulus complexes obtained from different growing ages of mice were cultured in the medium containing HCG and their rate of expansion were observed and at the same time their maturation rate was examined. The growth of follicles was also checked by histological method. It was impossible to isolate the oocyte-cumulus complexes from 13 or 15 days old mouse ovaries. The oocyte-cumulus complexes collected from 17 days old mouse were partially induced to expanded by HCG, and from 19 days, most of the complexes were induced to full expansion. The rate of cumulus cell expansion by HCG and the oocyte maturation increased steadly during the growing ages to adult. Thus, the time for follicles to get competence for expansion and maturation seems to be closely related. Antral follicles were appeared from 17 days old mice and Graafian follicles were seen from 21 days old mice. The competence for cumulus expansion increased during follicle growth up to 21 days old mice.

  • PDF

Alpha-Linolenic Acid: It Contribute Regulation of Fertilization Capacity and Subsequent Development by Promoting of Cumulus Expansion during Maturation

  • Lee, Ji-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.297-307
    • /
    • 2018
  • The objective of this study was to evaluate the effects of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on cumulus expansion, nuclear maturation, fertilization capacity and subsequent development in porcine oocytes. The oocytes were incubated with 0, 25, 50, and $100{\mu}M$ ALA. Cumulus expansion was measured at 22 h, and gene expresison and nuclear maturation were analyzed at 44 h after maturation. Then, mature oocytes with ALA were inseminated, and fertilization parameters and embryo development were evaluated. In results, both of cumulus expansion and nuclear maturation were increased in $50{\mu}M$ ALA groups compared to control groups (p<0.05). However, expression of gap junction protein alpha 1 (GJA1, cumulus expansion-related gene), delta-6 desaturase (FADS1, fatty acid metabolism-related gene), and delta-5 desaturase (FADS2) mRNA in cumulus cells were reduced by $50{\mu}M$ ALA treatment (p<0.05). Cleavage rate was enhanced in 25 and $50{\mu}M$ ALA groups (p<0.05), especially, treatment of $50{\mu}M$ ALA promoted early embryo develop to 4 and 8 cell stages (p<0.05). However, blastocyst formation and number of cells in blastocyst were not differ in 25 and $50{\mu}M$ ALA groups. Our findings show that ALA treatment during maturation could improve nuclear maturation, fertilization, and early embryo development through enhancing of cumulus expansion, however, fatty acid metabolism- and cumulus expansion-related genes were down-regulated. Therefore, addition of ALA during IVM of oocytes could improve fertilization and developmental competence, and further studies regarding with the mechanism of ALA metabolism are needed.

Effects of Trichostatin A on Cumulus Expansion during Mouse Oocyte Maturation

  • Du, Ming;Fu, Xiangwei;Zhou, Yanhua;Zhu, Shien
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1545-1552
    • /
    • 2013
  • This study was conducted to investigate the effects of Trichostatin A (TSA) on cumulus expansion during mouse oocyte maturation. TSA treatment inhibited cumulus expansion and significantly reduced the cumulus expansion index (CEI) (p<0.05). To determine the underlying mechanism, the expression levels of several key factors that play crucial roles in cumulus expansion including components of extracellular matrix (ECM) (Has2, Ptgs2, Ptx3, and Tnfaip6) and Growth differentiation factor 9 (GDF9) were measured in control and TSA treated samples by real-time PCR. The effect of TSA on ERK phosphorylation (p-ERK1/2) in cumulus cells and GDF9 protein level in fully grown oocytes (FGOs) were detected by Western blotting. The expression levels of the ECM genes were significantly decreased (p<0.05) by TSA treatment while GDF9 expression did not response to TSA (p>0.05). TSA treatment blocked the activation of ERK1/2 (p<0.05) and had no significant effect on GDF9 protein expression (p>0.05). Collectively, these results suggested that TSA treatment altered ECM gene expression and blocked ERK1/2 activation to inhibit cumulus expansion in the mouse.

The Effects of Transcription / Translation Inhibitors on Meiotic Maturation of Porcine Oocyte In Vitro

  • Byun, Tae-Ho;Lee, Sung-Ho;Park, Chang-Sik;Lee, Sang-Ho
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.117-117
    • /
    • 2002
  • The oocytes from most of animal species accumulate genetic information and other necessary materials during oogenesis for the later use in the early development. Over the years oocyte maturation has been studied extensively both in vitro and in vivo. Particularly, maturation of follicular oocyte in vitro becomes one of the important tools for the studies of basic cell biology, the in vitro technology of animal production, and in particular, the somatic cell cloning by nuclear transfer. We examined meiotic maturation and cumulus expansion in the presence of translation or transcription inhibitors for varying periods of in viかo maturation (IVM) of pig oocyte. In Experiment 1, the results revealed that translation and transcription inhibitors inhibited cumulus expansion and meiotic maturation during 35h of IVM. However, 50 to 60% of the oocytes underwent nuclear maturation without cumulus expansion during 75h of IVM. The rest of the oocytes were arrested at metaphase I (40-50%) in the presence of the inhibitors. In Experiment II, the OCCs were exposed to the drugs only for 15h to examine translation and transcription inhibitors on cumulus expansion and meiotic maturation. Transcription inhibitors for 15h did not arrest meiotic maturation when the oocytes were cultured for subsequent, necessary period of IVM, whereas cumulus expansion was completely inhibited, suggesting that initial 15h is critical transcription activity far cumulus expansion. Translation inhibitors for 15h exposure did not alter cumulus expansion and meiotic maturation during subsequent culture in the absence of the drugs. In Experiment III, the OCCs were exposed to the drugs only for later 30h to examine the influence of transcription and translation inhibitors on oocyte maturation. Interestingly, all meiotic maturation underwent normally with full expansion of cumulus. Similar results were obtained from Experiment IV where 5h of exposure from 15 to 20h of IVM culture to the drugs was performed and subsequently cultured for same period in fresh medium. Taken there results together, both transcription and translation are necessary for nuclear maturation and cumulus expansion, and first 15h IVM for cumulus expansion is critical. The arrested oocytes by the drugs were still capable of undergoing nuclear maturation, although cumulus expansion was affected.

  • PDF

Cumulus Oocyte Complex Expansion Inhibiting Ingredient in Porcine Follicular Fluid (돼지 난포액내 난구세포 난자복합체 팽창 억제 성분)

  • 오현주;김은희;손채은;이은주;박영식
    • Journal of Embryo Transfer
    • /
    • v.15 no.3
    • /
    • pp.203-210
    • /
    • 2000
  • The objective of this study was to identify a follicular fluid ingredient inhibiting the cumulus oocyte complex (COC) expansion. Thus, follicular fluid or liquid chromatographic fractions of follicular fluid was supplemented in COC culture medium. And COCs were incubated for 48 hours to investigate about cumulus expansion and also the first polar body extrusion. The results obtained were as follows; 1. The fluid of medium follicle significantly inhibited the COC expansion. 2. The fluid of large follicle inhibited the COC expansion. 3. Follicular fluid showed six major fractions at retention volumes (RVs) 1.83, 1.91, 2.15, 2.34, 2.53 and 2.74 ml after separation with Superose 12 column. Of the major fractions, fractions RV2.15, RV2.34, RV2.53 and RV2.74 inhibited both COC expansion and polar body extrusion. Especially, fractions of RV2.15 and RV2.53 significantly inhibited COC expansion, oocyte denudation and polar body extrusion. In conclusion, porcine follicular fluid contained a COC expansion inhibiting ingredient (CEI) that may be contained largely in fractions RV2.15 and RV2.53. And CEI may inhibit oocyte maturation by inhibition of oocyte denudation and extrusion of the first polar body.

  • PDF

Effect of Human Cord Serum on Oocyte Maturation and Cumulus Cell Expansion (신생아제대혈청이 난자성숙과 난구세포 분산에 미치는 영향)

  • Lee, Yu-Il;Park, Hyun-Jeong;Kwon, Young-Suk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.9-16
    • /
    • 1998
  • This study was performed to investigate the stimulating effect on oocyte maturation and cumulus cell expansion in TC199 media by human cord serum (HCS) supplementation. Immature mouse oocyte cumulus complexes (OCCs) were cultured in TC199 media supplemented with bovine serum albumin (BSA), HCS and human chorionic gonadotropin (hCG) instead of luteinizing hormone (LH) respectively, and the expression of cumulus expansion and oocyte maturation were observed. After 4hr and 24hr culture with or without OCCs, media containing 0.4% BSA, 10% HCS and 10 IV hCG respectively were collected and analyzed for changing concentrations of estradiol $(E_2)$, progesterone $(P_4)$, testosterone (T), and $PGF_{2\alpha}$. There were no elevation of $E_2$, T, and $PGF_{2\alpha}$ by OCCs culture, but minute elevation of $P_4$ level by 24hr OCCs culture in hCG supplementation (p=0.048). The stimulating pattern of cumulus expansion of OCCs by HCS and hCG supplementation was similar to our previously report using Ham's F-10 media, however oocyte maturation rates after 24hr OCCs culture in all media were increased by $20\sim30%$ compared to Ham's F-10 media. These results suggest that LH in HCS induce cumulus expansion probably by $P_4$ secretion of OCCs, and TC199 is efficient media for immature mouse oocyte maturation.

  • PDF

Studies on the Cumulus Expansion and Oocyte Maturation of Mouse Cumulus-Oocyte Complexes: Regulation of Intracellular cAMP Level (생쥐 난자-난구 복합체의 성숙과 분산에 관한 연구 : 세포내 cAMP의 조절)

  • 권혁방;고선근;임욱빈
    • The Korean Journal of Zoology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • Cyclic AMP (cAMP) was known to play a key role in the regulation of cumulus expansion and oocyte maturation of mammalian cumulus-oocyte complexes (COC's) in vivo and in vitro. The present experiments were conducted to know how intracellular level of cAMP in these cells is controlled. Intracellular cAMP level was modulated by culturing mouse CGC's with an adenylate cyclase stimulator, forskolin, a phosphodiesterase inhibitor, 3-isobutyl-1-methyixanthine (IBMX), human chorionic gonadotrophin (HCG), or follicle stimulating hormone (FSH). The rate of cumulus expansion and germinal vesicle break-down (GVBD) was checked after culture and used as a biological end point. Forskolin in the medium began to stimulate the expansion of the complexes at 1 nM and induced maximum expansion (80~90%) at 0 1~10 $\mu$M. The expansion rate was reduced to 60% when forskolin concentration was increased to 100 $\mu$M. Oocyte GVBD occurred normally (75~82%) in the presence of 10 $\mu$M of forskolin, but partial suppression was appeared at 100 pM of the drug (40%). IBMX also stimulated the expansion from the concentration of 0.01 pM and induced full expansion (81~89%) between the concentration of 1-1000 $\mu$M. Meiotic resumption was occurred normally under 10 $\mu$M of IBMX, but suppressed drastically from the concentration of 100 $\mu$M. The minimum exposing time to hormone or drugs required to trigger cumulus expansion was two minutes with HCG, 15~30 minutes with FSH and fors kolin, and two hours with IBMX. The data presented here seemed to imply that intracellular cAMP level in cumulus cells is regulated by both adenylate cyclase and phosphodiesterase and cumulus expansion is induced by a peak of cAMP while meiotic arrest is maintained by continuous presence of cAMP.

  • PDF

Studies on the Metabolic Cooperativity between Ooccte and Cumulus Cells in Mammalian Oocyte Cumulus Complexes in vitro (포유동물 난자-난구 복합체의 Metabolic cooperativity)

  • 고선근;나철호;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The relationship between cumulus cell expansion, cocyte maturation and metabolic cooperativitiy was investigated by using mouse and pig cocyte-cumulus complexes in vitro. Cocyte germinal vesicle breakdown (GVBD) and cumulus expansion were manipulated with hormones or reagents which increase intracellular cAMP leveL Metabolic cooperativity between oocyte and cumulus cells was assessed by determination of the fraction of radiolabelled uridine marker that was transferred from the cumulus mass to the oocyte. Uptake of uddine marker by mouse and pig cumulus mass was increased by about fourfold of basal level with the stimulation of hormones (human choriononic gonadotrophin, HCG; follicle stimulating hormone, FSH) or cyclic AMP sttmulators (3-isobutyl-1-methylxanthine, IBMX; forskolin) during culture. However, the fraction of uridine that was transferred from the cumulus mass to the cocyte (transfer ratio) was gradually decreased during culture, irrespective with the presence of hormones or stimulators. The decrease of the transfer ratio was not correlated with the state of occyte whether they have GV or not, or with the degree of cumulus expansion. In mouse complexes, HCG induced more significant reducton of transfer ratio than other treatments. These results do not support the idea that modulations of metabolic cooperativity between cumulus cells and oocytes are important for the regulation of meiotic resumption in mammals.

  • PDF