• Title/Summary/Keyword: Cumulative fallout

Search Result 7, Processing Time 0.019 seconds

A study of characteristics of cumulative deposition of fallout Pu in environmental samples

  • Lee, Myung Ho;Song, Byoung Chul;Jee, Kwang Yong;Park, Yeong Jae;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2006
  • This paper describes the cumulative deposition of fallout Pu in soil and lichen at the present time and give the characteristics of fallout Pu deposits in the soil. In the soil of the forest, the accumulated depositions of $^{239,240}Pu$ were estimated to be in the range of 34.0 to $101.2Bq\;m^{-2}$ with an average value of $65.3{\pm}21.6Bq\;m^{-2}$. The average inventory of $^{239,240}Pu$ in the forest was calculated to be two times higher than that in the hill. Also, the deposited activities of $^{239,240}Pu$ in cultivated soil were significantly lower than those in the hill or forest. However, the cumulative depositions of fallout Pu in the volcanic ash soil on Cheju Island were much higher than those in the forest and hill soils. The measured activity concentrations of Pu isotopes in lichens and mosses showed large variations, due to characteristics of species and life span of lichen and moss colonies. From depth profiles, it was found that most of the fallout Pu has been accumulated in upper 10 cm layer of soil. Except for a few cases, the concentrations of $^{239,240}Pu$ in soil tended to decrease exponentially with increasing soil depth. Among parameters affecting the cumulative deposition of fallout Pu, organic substances and rainfall play an important role in the retention and relative mobility of fallout Pu in the soil. However, pH showed a weak correlation with the deposition of fallout Pu in the soil. From sequential leaching experiments, Pu was found to be associated predominantly with the "organic" and "oxy-hydroxy" fractions. Both the activity ratios of $^{238}Pu/^{239,240}Pu$ and $^{241}Pu/^{239,240}Pu$ in soils, lichens and mosses and the atomic ratios of $^{240}Pu/^{239}Pu$ in soils are close to those observed in the cumulative deposit global fallout from nuclear weapon testings. The results obtained from this research make it possible to interpret and predict the behavior of fallout Pu under natural conditions.

Inventory of Pu-238 and Pu-239,240 in the Soil of Korea

  • Lee, Myung-Ho;Lee, Chang-Woo;Park, Yong-Ho;Kim, Sang-Bok;Kim, Sam-Rang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.893-898
    • /
    • 1995
  • The cumulative deposition of Pu-238 and Pu-239,240 by the end of 1994 in undisturbed for the last 40 years, was determined at 9 sites in Korea. The cumulative deposition of Pu-238 and Pu-239 ranged from 0.76 to 3.77 and from 18.42 to 101.84 $Bqm^{-2}$, respectively. The mean values of the cumulative deposition of Pu-238 and Pu-239,240 were 2.16 and 54.75 $Bqm^{-2}$, respectively. These values are close to the value of worldwide fallout. No significant contribution to the cumulative deposition of Pu-238 and Pu-239,240 originating from the Chernobyl accident was found at my site.

  • PDF

A Study on Distribution of Cs-137 and Sr-90 in Soils around Taejon Region (대전지역 토양에 대한 Cs-137 및 Sr-90 방사능농도 분포 조사)

  • Lee, Myung-Ho;Lee, Chang-Woo;Hong, Kwang-Hee;Choi, Yong-Ho;Kim, Sang-Bok;Park, Doo-Won;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 1995
  • The concentration of Cs-137 and Sr-90 has been analyzed in soils around Taejon region. A correalation was found between the concentration of Cs-137 and the organic matter content. The mean value of Cs-137 was 14.37Bq/kg-dry and that of Sr-90 was 7.95Bq/kg-dry in undisturbed soils around Taejon region. The concentration ratio of Cs-137/Sr-90 was 1.99. The distribution of Cs-137 and Sr-90 was similar to cumulative fallout level and had been more affected by nuclear weapons test than by the chernobyl accident.

  • PDF

A Study on the Atmospheric Deposition of Radionuclides($^137Cs$ and $^210Pb$) on the Korean Peninsula (대기를 통하여 한반도 지표면으로 공급되는 방사성 핵종( $^137Cs$$^210Pb$)에 관한 연구)

  • 이윤구;김석현;홍기훈;이광우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.351-359
    • /
    • 1995
  • In order to investigate geochemical behaviors of artificial radionuclide($^{137}$ Cs), the fallout deposition of arificial radioisotope($^{137}$ Cs) was measured from May to October in 1994 at the Korea Ocean Research & Development Institute(KORDI), Ansan, Kyunggido, Korea. And to study radioisotopic behavior and cumulative action in soil, soil samples were collected from Kwang-Leung Forest, Kyunggidom and artificial radioisotope ($^{137}$ Cs) and natural radioisotope($^{210}$ Pb) were identified. The amount of $^{137}$ Cs in atmosphere collected by wet deposition process in May was found to be 4.95 to 11.96mBq m$^{-2}$ whereas the amounts of $^{137}$ Cs by dry deposition process in May and October were found to be 4.0mBq g$^{-1}$ and 3.0mBq g$^{-1}$ , respectively. The amount of $^{137}$ Cs accumulated in soil was measured to be 311mBq cm$^{-2}$ , which contained 83% of the total inputs from atmospheric fallout (374 mBq cm$^{-2}$ ) since 1960s. In addition, the accumulation rate and the annual flux of $^{210}$ Pb into soils were 0.32cm yr$^{-1}$ and 34 mBq cm$^{-2}$ yr$^{-1}$ , respectively. Conclusively, it was found that arificial radioisotopes were mainly from the stratosphere and soil resupension of continental China through the troposphere.

  • PDF

Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown (저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수)

  • 이충우;차영일
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.123-133
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

  • PDF

Absorption of Copper(Cu) by Vegetation on Reservoir Sediment Exposed after Drawdown (저수위시 노출된 저수지 저니 상의 식생과 구리(Cu)의 흡수)

  • Lee, Chung-U;Cha, Yeong-Il
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.29-29
    • /
    • 1993
  • Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular p13n1 species germinate on the exposed sediment, but Persimria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of p. vulgaris, Ivas analyzed. Cu content in reservoir water decreased from $13.10mg/m^2$ on May 15 (before dralvdown) to $3.08mg/m^2$ in June 1 (after drawdown), mainly due to the loiwering of water level. Average atmospheric deposition of Cu by fallout particles was $10.84 {\mu}g/m^2/day$. Cu content in the surface 15cm of exposed sediment decreased from $5.094g1m^2$ right after drawdown, to $0.530g/m^2$ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment. only 0.3% in water If the rate of atmospheric Input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been $150.35mg/m^2$, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir, Standing crop of vegetation on the exposed sediment 41 days after drawdown was $730.67g/m^2$, of which 630.91g/m2 was p. vulgaris alone, and Cu content in P vulgaris at this time was $6.612mg/m^2$. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as p. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.

Genetic radiation risks: a neglected topic in the low dose debate

  • Schmitz-Feuerhake, Inge;Busby, Christopher;Pflugbeil, Sebastian
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.1.1-1.13
    • /
    • 2016
  • Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (A-bomb) survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down's syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response.