Browse > Article
http://dx.doi.org/10.5620/eht.e2016001

Genetic radiation risks: a neglected topic in the low dose debate  

Schmitz-Feuerhake, Inge (University of Bremen)
Busby, Christopher (Environmental Research SIA)
Pflugbeil, Sebastian (German Society for Radiation Protection)
Publication Information
Environmental Analysis Health and Toxicology / v.31, no., 2016 , pp. 1.1-1.13 More about this Journal
Abstract
Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (A-bomb) survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down's syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response.
Keywords
Congenital malformation; Down's syndrome; Environmental radioactivity; Internal radiation; Low level effects; Sex-ratio; Still birth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Muller HJ. Radiation damage to the genetic material. Am Sci 1950;38(1):33-59.
2 International Commission on Radiological Protection. The 2007 recommendations of the International Commission on Radiological Protection; 2007 [cited 2016 Jan 28]. Available from: http://www.icrp.org/publication.asp?id=ICRP%20Publication%20103.
3 Roff SR. Mortality and morbidity of members of the British Nuclear Tests Veterans Association and the New Zealand Nuclear Tests Veterans Association and their families. Med Confl Surviv 1999;15 Suppl 1:i-ix, 1-51.
4 Busby C, de Messieres ME. Miscarriages and congenital conditions in offspring of veterans of the British Nuclear Atmospheric Test Programme. Epidemiology (Sunnyvale) 2014;4:172.
5 Gardner MJ, Snee MP, Hall AJ, Powell CA, Downes S, Terrell JD. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria. BMJ 1990;300(6722):423-429.   DOI
6 Nomura T. Parental exposure to x rays and chemicals induces heritable tumours and anomalies in mice. Nature 1982;296(5857):575-577.   DOI
7 Hicks N, Zack M, Caldwell GG, Fernbach DJ, Falletta JM. Childhood cancer and occupational radiation exposure in parents. Cancer 1984;53(8):1637-1643.   DOI
8 McKinney PA, Alexander FE, Cartwright RA, Parker L. Parental occupations of children with leukaemia in west Cumbria, north Humberside, and Gateshead. BMJ 1991;302(6778):681-687.   DOI
9 Graham S, Levin ML, Lilienfeld AM, Schuman LM, Gibson R, Dowd JE, et al. Preconception, intrauterine, and postnatal irradiation as related to leukemia. Natl Cancer Inst Monogr 1966;19:347-371.
10 Shu XO, Gao YT, Brinton LA, Linet MS, Tu JT, Zheng W, et al. A population-based case-control study of childhood leukemia in Shanghai. Cancer 1988;62(3):635-644.   DOI
11 Moumdjiev N, Nedkova V, Christova V, Kostova S. Influence of the Chernobyl reactor accident on the child health in the region of Pleven, Bulgaria. In: International Pediatric Association. Excerpts from the 20th International Congress of Pediatrics; 1992 Sep 5-10; Rio de Janeiro, Brazil. Vevey: Nestle Nutrition Services; 1992, p. 57.
12 Shu XO, Reaman GH, Lampkin B, Sather HN, Pendergrass TW, Robison LL. Association of paternal diagnostic X-ray exposure with risk of infant leukemia. Investigators of the Childrens Cancer Group. Cancer Epidemiol Biomarkers Prev 1994;3(8):645-653.
13 Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J 1958;1(5086):1495-1508.   DOI
14 Caglayan S, Kayhan B, Mentesoglu S, Aksit S. Changing incidence of neural tube defects in Aegean Turkey. Paediatr Perinat Epidemiol 1989;3(1):62-65.   DOI
15 Guvenc H, Uslu MA, Guvenc M, Ozekici U, Kocabay K, Bektas S. Changing trend of neural tube defects in eastern Turkey. J Epidemiol Community Health 1993;47(1):40-41.   DOI
16 Mocan H, Bozkaya H, Mocan MZ, Furtun EM. Changing incidence of anencephaly in the eastern Black Sea region of Turkey and Chernobyl. Paediatr Perinat Epidemiol 1990;4(3):264-268.   DOI
17 Kruslin B, Jukic S, Kos M, Simic G, Cviko A. Congenital anomalies of the central nervous system at autopsy in Croatia in the period before and after the Chernobyl accident. Acta Med Croatica 1998;52(2):103-107.
18 Zieglowski V, Hemprich A. Facial cleft birth rate in former East Germany before and after the reactor accident in Chernobyl. Mund Kiefer Gesichtschir 1999;3(4):195-199 (German).   DOI
19 Shiono PH, Chung CS, Myrianthopoulos NC. Preconception radiation, intrauterine diagnostic radiation, and childhood neoplasia. J Natl Cancer Inst 1980;65(4):681-686.   DOI
20 Natarajan N, Bross ID. Preconception radiation and leukemia. J Med 1973;4(5):276-281.
21 Vogel, F, Rohrborn G, Schleiermeyer E. Radiation genetics in mammals. Stuttgart: Verlag; 1969 (German).
22 Dickinson HO, Parker L, Binks K, Wakeford R, Smith J. The sex ratio of children in relation to paternal preconceptional radiation dose: a study in Cumbria, northern England. J Epidemiol Community Health 1996;50(6):645-652.   DOI
23 Choi JW, Mehrotra P, Macdonald LA, Klein LW, Linsky NM, Smith AM, et al. Sex proportion of offspring and exposure to radiation in male invasive cardiologists. Proc (Bayl Univ Med Cent) 2007;20(3):231-234.   DOI
24 Scherb H, Voigt K. Trends in the human sex odds at birth in Europe and the Chernobyl Nuclear Power Plant accident. Reprod Toxicol 2007;23(4):593-599.   DOI
25 Scherb H, Voigt K. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities. Environ Sci Pollut Res Int 2011;18(5):697-707.   DOI
26 Busby C. Aspects of DNA damage from internal radionuclides; 2013 [cited 2016 Jan 28]. Available from: http://www.intechopen.com/books/new-research-directions-in-dna-repair/aspects-of-dna-damage-from-internal-radionuclides.
27 International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection; 1991 [cited 2016 Jan 28]. Available from: http://www.icrp.org/publication.asp?id=icrp%20publication%2060.
28 United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2001 report: hereditary effects of radiation [cited 2016 Jan 28]. Available from: http://www.unscear.org/unscear/en/publications/2001.html.
29 Doll R. Hazards of the first nine months: an epidemiologist's nightmare. J Ir Med Assoc 1973;66(5):117-126.
30 Platt JR. Strong inference: certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 1964;146(3642):347-353.   DOI
31 Feyerabend P. Against method. 4th ed. London: Verso; 2010, p. 13-48.
32 De Bellefeuille P. Genetic hazards of radiation to man. I. Acta Radiol 1961;56:65-80.   DOI
33 Busby C. Uranium epidemiology. Jacobs J Epidemiol Prev Med 2015;1(2):009.
34 Huxley HE, Zubay G. Preferential staining of nucleic acid-containing structures for electron microscopy. J Biophys Biochem Cytol 1961;11:273-296.   DOI
35 Lotz B, Haerting J, Schulze E. Changes in fetal and childhood autopsies in the region of Jena after the Chernobyl accident; 1996 [cited 2016 Jan 28]. Available from: http://www.meb.uni-bonn.de/gmds/abstracts/0095e.html (German).
36 Scherb H, Weigelt E. Cleft lip and cleft palate birth rate in Bavaria before and after the Chernobyl nuclear power plant accident. Mund Kiefer Gesichtschir 2004;8(2):106-110 (German).   DOI
37 Korblein A. Abnormalities in Bavaria after Chernobyl. Strahlentelex 2004;416-417:4-6 (German).
38 Government of Berlin West, Section of Health and Social Affairs. Annual health report. Berlin: Government of Berlin West; 1987 (German).
39 Eckerman KF, Ryman JC. Federal guidance report 12: external exposure to radionuclides in air, water and soil; 1993 [cited 2016 Feb 20]. Available from: https://crpk.ornl.gov/documents/fgr12.pdf.
40 Busby C, Cato MS. Increases in leukemia in infants in Wales and Scotland following Chernobyl: evidence for errors in statutory risk estimates. Energy Environ 2000;11(2):127-139.   DOI
41 Yablokov AV, Nesterenko VB, Nesterenko AV, editors. Chernobyl-consequences of the Catastrophe for people and the environment; 2009 [cited 2016 Feb 20]. Available from: http://www.strahlentelex.de/Yablokov_Chernobyl_book.pdf.
42 Lomat L, Galburt G, Quastel MR, Polyakov S, Okeanov A, Rozin S. Incidence of childhood disease in Belarus associated with the Chernobyl accident. Environ Health Perspect 1997;105 Suppl 6:1529-1532.   DOI
43 Scherb H, Sperling K. Today's lessons from the Chernobyl accident. Naturwiss Rundsch 2011;64(5):229-239 (German).
44 Sperling K, Neitzel H, Scherb H. Evidence for an increase in trisomy 21 (Down syndrome) in Europe after the Chernobyl reactor accident. Genet Epidemiol 2012;36(1):48-55.   DOI
45 Akar N. Further notes on neural tube defects and Chernobyl. Pediatr Perinatal Epidemiol 1994;8:456-457.
46 Padmanabhan VT. Sex ratio in A-bomb survivors. Evidence of radiation induced X-linked lethal mutations. In: Busby C, Busby J, Rietuma D, de Messieres M, editors. Fukushima and health: what to expect. Proceedings of the 3rd International Conference for the European Committee on Radiation Risk; 2009 May 5-6; Lesvos, Greece. Aberystwyth: Green Audit; 2012, p. 273-304.
47 Sternglass, EJ. Environmental radiation and human health. In: Le Cam LM, Neyman J, Scott EL, editors. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability; 1971 Jul 19-22; Berkeley, CA, USA. Berkeley: University of Calififornia Press; 1971, p. 145-221.
48 Constantinescu DG, Hatieganu E. Metachromasia through uranyl ions: a procedure for identifying the nucleic acids and the nucleotides. Anal Biochem 1974;62(2):584-587.   DOI
49 Nielsen PE, Hiort C, Sonnichsen SH, Buchardt O, Dahl O, Norden B. DNA binding and photocleavage by uranyl(VI)(UO22+) salts. J Am Chem Soc 1992;114(13):4967-4975.   DOI
50 Zatsepin IO, Verger P, Gagniere B, Khmel RD; Belarus Institute for Hereditary Diseases. Cluster of Down's syndrome cases registered in January 1987 in Republic of Belarus as a possible effect of the Chernobyl accident. Int J Radiat Med 2004;6(1-4):57-71.
51 Sviatova GS, Abil'dinova GZh, Berezina GM. Frequency, dynamics, and structure of congenital malformations in populations under long-term exposure to ionizing radiation. Genetika 2001;37(12):1696-1704 (Russian).
52 Wiesel A, Spix C, Mergenthaler A, Queisser-Luft A. Maternal occupational exposure to ionizing radiation and birth defects. Radiat Environ Biophys 2011;50(2):325-328   DOI
53 Cox DW. An investigation of possible genetic damage in the offspring of women receiving multiple diagnostic pelvic X rays. Am J Hum Genet 1964;16:214-230.
54 Macht SH, Lawrence PS. National survey of congenital malformations resulting from exposure to roentgen radiation. Am J Roentgenol Radium Ther Nucl Med 1955;73(3):442-466.
55 Sever LE, Gilbert ES, Hessol NA, McIntyre JM. A case-control study of congenital malformations and occupational exposure to low-level ionizing radiation. Am J Epidemiol 1988;127(2):226-242.   DOI
56 Parker L, Pearce MS, Dickinson HO, Aitkin M, Craft AW. Still-births among offspring of male radiation workers at Sellafield nuclear reprocessing plant. Lancet 1999;354(9188):1407-1414.   DOI
57 Shakhatreh FM. Reproductive health of male radiographers. Saudi Med J 2001;22(2):150-152.
58 Baverstock K, Belyakov OV. Some important questions connected with non-targeted effects. Mutat Res 2010;687(1-2):84-88.   DOI
59 Whyte RK. First day neonatal mortality since 1935: re-examination of the Cross hypothesis. BMJ 1992;304(6823):343-346.   DOI
60 le Vann LJ. Congenital abnormalities in children born in Alberta during 1961: a survey and a hypothesis. Can Med Assoc J 1963;89(3):120-126.
61 Busby CC. Very low dose fetal exposure to Chernobyl contamination resulted in increases in infant leukemia in Europe and raises questions about current radiation risk models. Int J Environ Res Public Health 2009;6(12):3105-3114.   DOI
62 Urquhart J. Radiation exposure and subsequent health history of veterans and their children. In: New Evaluation of Radiation Risk, International Conference of the Society for Radiation Protection. Bremen: Gesellschaft fur Strahlenschutz; 1992, p. 209-216 (German).
63 Tsyb AF, Souchkevitch GN, Lyasko LI, Artamonova YZ, Navolokin VV, Raykina LG. General characterization of health in first-generation offspring born to liquidators of the Chernobyl NPP accident consequences. Int J Radiat Med 2004;6(1-4):116-121.
64 Matveenko EG, Borovykova MP, Davydow GA. Physical characteristics and primary morbidity in liquidator's children. In: Yablokov AV, Busby C, editors. Chernobyl 20 years after. Aberystwyth: Green Audit Books; 2006, p. 176-179.
65 Liaginskaia AM, Tukov AR, Osipov VA, Ermalitskii AP, Prokhorova ON. Congenital malformations among offspring of the liquidators of the consequences from Chernobyl accident. Radiats Biol Radioecol 2009;49(6):694-702 (Russian).
66 Smirnova EI, Lyaginskaya AM. Heart development of Sr-90 injured rats. In: Moskalev YI, Idz Y, editors. Radioactive isotopes and the body. Moscow: Izdatel'stvo Meditsina;1969, p. 348 (Russian).
67 Luning KG, Frolen H, Nelson A, Ronnback C. Genetic effects of strontium-90 injected into male mice. Nature 1963;197:304-305.   DOI
68 Ehrenberg L, Eriksson G. The dose dependence of mutation rates in the rad range, in the light of experiments with higher plants. Acta Radiol Diagn (Stockh) 1966:Suppl 254:73-78.
69 Stokke T, Oftedal P, Pappas A. Effects of small doses of radioactive strontium on the rat bone marrow. Acta Radiol Ther Phys Biol 1968;7(5):321-329.   DOI
70 Busby C, Lengfelder E, Pflugbeil S, Schmitz-Feuerhake I. The evidence of radiation effects in embryos and fetuses exposed to Chernobyl fallout and the question of dose response. Med Confl Surviv 2009;25(1):20-40.   DOI
71 Dolk H, Nichols R. Evaluation of the impact of Chernobyl on the prevalence of congenital anomalies in 16 regions of Europe. EUROCAT Working Group. Int J Epidemiol 1999;28(5):941-948.   DOI
72 United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2006 report vol. I: effects of ionizing radiation [cited 2016 Jan 28]. Available from: http://www.unscear.org/unscear/en/publications/2006_1.html.
73 Hoffmann W. Fallout from the Chernobyl nuclear disaster and congenital malformations in Europe. Arch Environ Health 2001;56(6):478-484.   DOI
74 Petrova A, Gnedko T, Maistrova I, Zafranskaya M, Dainiak N. Morbidity in a large cohort study of children born to mothers exposed to radiation from Chernobyl. Stem Cells 1997;15 Suppl 2:141-150.   DOI
75 Lazjuk GI, Nikolaev DL, Novikova IV. Changes in registered congenital anomalies in the Republic of Belarus after the Chernobyl accident. Stem Cells 1997;15 Suppl 2:255-260.   DOI
76 Feshchenko SP, Schroder HC, Muller WE, Lazjuk GI. Congenital malformations among newborns and developmental abnormalities among human embryos in Belarus after Chernobyl accident. Cell Mol Biol (Noisy-le-grand) 2002;48(4):423-426.
77 Bogdanovich IP. Comparative analysis of the death rate of children, aged 0-5, in 1994 in radiocontaminated and conventionally clean areas of Belarus. In: Medicobiological effects and the ways of overcoming the Chernobyl accident consequence. Minsk-Vitebsk: Ministry of Emergency and Chernobyl Problems of Belarus and Academy of Sciences of Belarus; 1997, p. 4 (Russian).
78 Savchenko VK. The ecology of the Chernobyl catastrophe: scientific outlines of an International Programme of Collaborative Research. Paris: United Nations Educational Scientific and Organisation; 1995, p. 83.
79 Kulakov VI, Sokur TN, Volobuev AI, Tzibulskaya IS, Malisheva VA, Zikin BI, et al. Female reproductive function in areas affected by radiation after the Chernobyl power station accident. Environ Health Perspect 1993;101 Suppl 2:117-123.   DOI
80 Shidlovskii PR. General morbidity of the population in districts of the Brest region. Zdravoohranenie Belorussii (Minsk) 1992;1:8-11 (Russian).
81 Wertelecki W. Malformations in a Chernobyl-impacted region. Pediatrics 2010;125(4):e836-e843.   DOI
82 Wertelecki W, Yevtushok L, Zymak-Zakutnia N, Wang B, Sosyniuk Z, Lapchenko S, et al. Blastopathies and microcephaly in a Chernobyl-impacted region of Ukraine. Congenit Anom (Kyoto) 2014;54(3):125-149.   DOI
83 Akar N, Ata Y, Aytekin AF. Neural tube defects and Chernobyl? Paediatr Perinat Epidemiol 1989;3(1):102-103.   DOI
84 Godlevsky I, Nasvit O. Dynamics of health status of residents in the Lugyny district after the accident of the ChNPS. In: Imanaka T, editor. Research activities about the radiological consequences of the Chernobyl NPS accident and social activities to assist the sufferers by the accident. Osaka: Kyoto University Research Reactor Institute; 1998, p. 149-156.