• 제목/요약/키워드: Cultured neurons

검색결과 240건 처리시간 0.026초

Effects of Dopamine Agonists on Primary Cultured Neurons from Various Brain Regions

  • Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제2권1호
    • /
    • pp.16-22
    • /
    • 1994
  • Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions (substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro studies suggesting that cultured neurons maintained normal cytological and physiological conditions. Modulation of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important roles on brain functions. When neurons were clamped near resting membrane potential (-74mV), R(+), R(+)-SKF 38393, a specific D$_1$receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images to those from striatal neurons; D$_1$receptor agonists inhibited hippocampal neurons but quinpirole, a D$_2$receptor agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.

  • PDF

전갈 전탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 효과 (Effects of Scorpio water extract on Cultured Spinal Sensory Neurons Damaged by Xanthine Oxidase/Hypoxanthine)

  • 양흥수;권강범;송용선;류도곤
    • 동의생리병리학회지
    • /
    • 제16권3호
    • /
    • pp.553-556
    • /
    • 2002
  • To study the effects of Scorpio on oxygen free radical-mediated damage by xanthine oxidase/hypoxanthine (XO/HX) on cultured spinal sensory neurons, in vitro assays such as MTT assay were used in cultured spinal sensory neurons derived from mice. Spinal sensory neurons were cultured in media containing various concentrations of XO/HX for 6 hours, after which the neurotoxic effect of XO/HX was measured by in vitro assay. The protective effect of the herb extract, Scorpio water extract against XO/HX-induced neurotoxicity was also examined. The results are as follows : In MTT assay, XO/HX significantly decreased the cell viability of cultured mouse spinal sensory neurons according to exposure concentration and time in these cultures. The effect of Scorpio water extract on XO/HX-induced neurotoxicity showed a quantitative increase in neurdfilament. These results suggest that XO/HX has a neurotoxic effect on cultured spinal sensory neurons from mice and that the herb extract, Scorpio water extract, was very effective in protecting XO/HX-induced neurotoxicity.

산소자유기에 의해 저해된 배양 척수감각 신경절 세포에 대한 상피세포성장인자의 영향 (Effect of EGF against Oxygen Radical-Induced Neurotoxicity in Cultured Spinal Dorsal Root Ganglion Neurons of Mouse)

  • 박승택;김형룡;채한정
    • 약학회지
    • /
    • 제41권1호
    • /
    • pp.99-104
    • /
    • 1997
  • In order to elucidate the cytotoxic effect of oxygen radicals on cultured spinal dorsal root ganglion(DRG) neurons derived from mouse. the neurotoxic effect of oxygen radicals w as examined after cultured DRG neurons were exposed to xanthine oxidase(XO) and hypoxanthine(HX)-oxygen radical generating system. In addition. neuroprotective effect of epidermal growth factor(EGF) against oxidant-induced neurotoxicity was also evaluated in these cultures. The results were, as follows: 1. Lethal concentration 50(LC$_{50}$) was 35mU/ml XO and 0.1mM HX in cultured DRG neurons. 2. Oxygen radicals induced the morphological changes such as the decrease of cell number and loss of neurites in these cultures. 3. EGF increased the cell viability and neurofilament in neurons damaged by oxygen radicals. From above the results, it is suggested that oxygen radicals have a cytotoxic effect on cultured DRG neurons of neonatal mouse and selective neurotrophic factors such as EGF are, effective, in blocking the neurotoxicity induced by oxygen radicals in cultured spinal DRG neurons.

  • PDF

소풍활혈탕 열탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 영향 (Effects of Sopunghwalhyul-tang Water Extract against Xanthine Oxidase / Hypoxanthine(XO/HX)-Induced Neurotoxicity in the Cultured Mouse Spinal Sensory Neurons)

  • 양경석;신선호
    • 대한한의학회지
    • /
    • 제21권1호
    • /
    • pp.29-39
    • /
    • 2000
  • In order to elucidate the toxic mechanism of oxygen radicals in cultured mouse spinal sensory neurons, cytotoxic effect of oxygen radicals was evaluated by M1T assay and NR assay. In addition, protective effect of Sopunghwalhyultang(SPHHT) water extract on oxidant-induced neurotoxicity was investigated on these cultures. Spinal sensory neurons derived from mice were cultured in mediums containing various concentrations of Xanthine Oxidase / Hypoxanthine(XO/HX). Cell viability was measured by MTT assay and NR assay. XO/HX-mediated oxygen radicals remarkably decreased cell viability of cultured spinal sensory neurons in a dose-and time-dependent manner. And also, SPHHT blocked XO/HX-induced neurotoxicity in these cultures. These results suggest that oxygen radicals are toxic and SPHHT are effective in blocking against the oxidant-induced neurotoxicity in cultures of spinal sensory neurons of mice.

  • PDF

활성산소로 손상된 대뇌신경세포에 대한 천오두의 영향 (Effect of Aconiti Radix on Cultured Cerebral Neurons Damaged by Reactive Oxygen Species)

  • 심재한;이은미;이종화;김대근;이영찬;강정호;박신기
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.499-502
    • /
    • 2003
  • Neurotoxicity of reactive oxygen species(ROS) and neuroprotective effect of Aconiti Radix(AR) against ROS-induced cytotoxicity were determined on cultured mouse cerebral neurons by MTT assay after cerebral neurons were cultured for 5 hours in various concentrations of GO. GO was toxic in a dose-dependent manner on cultured cerebral neurons after cerebral neurons were incubated for 5 hours in media containing 5~40mU/ml GO. While, cultures were pretreated with 180 μg/ml AR for 2 hours increased remarkably cell viability. From these results, it is suggested that GO has toxic effect on cultured mouse cerebral neurons by the decrease of cell viability. And also, herb extract such as AKR is very effective in the protection pf neurotoxicity induced by GO.

백굴채(白屈菜)가 손상된 배양척수감각신경세포에 미치는 영향 (Effects of Herbar Chelidonii on the Cultured Spinal Sensory Neurons Damaged by XO/HX)

  • 신병철;송용선
    • 대한추나의학회지
    • /
    • 제2권1호
    • /
    • pp.143-157
    • /
    • 2001
  • Objectives and Methods : To evaluate the mechanism of oxidative damage by xanthine oxydase(XO) and hypoxanthine(HX)-induced oxygen radicals, MTT assay and NR assay were carried out after the cultured mouse spinal sensory neurons were preincubated for 4 hours with various concentrations of XO/HX. And the amount of total protein. neurofilament EIA. lipid peroxidation and LDH activity were measured, to evaluate the protective effect of Herbar Chelidonii(HC) water extract on cultured spinal sensory neurons damaged by XO/HX. after the cultured mouse spinal sensory neurons were preincubated with various concentrations of HC water extract for 3 hours prior to exposure of XO/HX. Results : XO/HX decreased significantly the survival rate of the cultured mouse sensory neurons by NR assay and MTT assay In proportion to concentration and exposed time. In proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA. the decrease of total protein amount by SRB assay and the Increase of lipid peroxidation as well as LDH. HC showed the quantitative increase of neurofilament and total protein, but showed the decrease of lipid peroxidation and LDH activity against the neurotoxicity of XO/HX. Conclusions : From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and that the herbs extract, such as HC, prevent the toxicity of XO/HX effectively in that they decrease lipid peroxidation and LDH activity.

  • PDF

Glucose Oxidase에 의(依)하여 손상(損傷)된 배양척수감각신경절세포(培養脊髓感覺神經節細胞)에 대(對)한 음양곽(淫羊藿)의 효과(效果) (Effect of Epimedium Koreanum Nakai on GO-Induced Neurotoxicity in Cultured Mouse Spinal Dorsal Root Ganglion Neurons)

  • 박승택;이호섭;윤용갑;박병림
    • 대한한의학방제학회지
    • /
    • 제7권1호
    • /
    • pp.143-151
    • /
    • 1999
  • 척수감각신경절세포에 대한 산소자유기의 신경독성효과에 대한 기전을 규명하기 위하여 여러 농도의 Glucose Oxidase(GO)를 배양 척수 감각신경절세포에 처리한 후 GO의 독성효과를 분석하였으며 또한 GO에 의하여 유발된 신경독성에 대한 음양곽(Epimedium Koreanum Nakai)의 방어효과를 MTT assay법에 의하여 조사하여 다음과 같은 결론을 얻었다. GO는 신경세포에 처리한 농도와 시간에 비례하여 세포의 생존율을 유의하게 감소시켰으며, 또한 음양곽이 GO의 독성효과를 효과적으로 방어하였다. 이상의 결과로부터 산소자유기인 GO는 생쥐의 배양 척수감각신경절세포에 독성을 나타냈으며 음양곽과 같은 한약추출물이 GO의 독성을 방어하는데 효과적인 것으로 나타났다.

  • PDF

과산화수소로 손상된 배양 해마신경세포에 대한 Vitamin E의 영향에 관한 연구 (Study on the Effect of Vitamin E on Cultured Hippocampal Neurons Damaged by Hydrogen Peroxide)

  • 이정헌;이종화;조남수
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.447-450
    • /
    • 2003
  • To clerify the cytotoxicity of reactive oxygen species in cultured hippocampal neurons of neonatal mouse, toxic effect was measured by MTT assay after cultured cells were incubated for 3 hours in the media containing 1~40 μM concentrations of H₂O₂. In addition, the protective effect of vitamin E was determined in these cultrures. Cell viability was significantly decreased in a dose-dependent manner after exposure of 10 μM H₂O₂ to cultured mouse hippocampal neurons for 5 hours. In the protective effect of vitamin E, vitamin E prevented the H₂O₂-induced cytotoxicity in these cultures. From these results, it suggests that H₂O₂ has toxic effect in cultured mouse hippocampal neurons and vitamin E has protective effect on the cytotoxicity induced by H₂O₂.

조구등(釣鉤藤)이 산소자유기(酸素自由基)에 의하여 손상(損傷)된 배영척수감각신경절세포(培養脊髓感覺神經節細胞)에 미치는 영향(影響)에 관(關)한 연구(硏究) (A Study on the Effects of Ramulus et Uncus Uncariae (REUU) on the Cultured Spinal Dorsal Root Ganglion Neurons Damaged by Oxygen Free Radicals)

  • 강형원;박진성
    • 동의신경정신과학회지
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 2000
  • To study the effects of Ramulus et Uncus Uncariae (REUU) on oxygen free radical-mediated damage by hydrogen peroxide $(H_{2}O_{2})$ on cultured spinal sensory neurons, in vitro assays such as MTT assay, NR assay, neurofilament enzymeimmuno assay (EIA), sulforhodamine B (SRB) assay, assay for lactate dehydrogenase (LDH) activity and assay for lipid peroxidation were used in cultured spinal dorsal root ganglion neurons derived from mice, Spinal dorsal root ganglion neurons were cultured in media containing various concentrations of $H_{2}O_{2}$ for 5 hours, after which the neurotoxic effect of $H_{2}O_{2}$ was measured by in vitro assay. The protective effect of the herb extract, Ramulus et Uncus Uncariae (REUU) against H2O2-induced neurotoxicity was also examined. The results are as follows. 1. In NR assay and MTT assay, $H_{2}O_{2}$ significantly decreased the cell viability of cultured mouse spinal dorsal root ganglion neurons according to exposure concentration in these cultures. An additional time course study was done on these cultures. 2. Cultured spinal dorsal root ganglion neurons which were exposed to various concentrations of $H_{2}O_{2}$ showed a quantitative decrease of neuronal cells by EIA and of total protein by sulforhodamine B (SRB) assay, while they showed an increase of both lipid peroxidation and LDH activity. 3. The effect of Ramulus et Uncus Uncariae (REUU) on $H_{2}O_{2}$ induced neurotoxicity showed a quantitative increase in both neurofilament and total protein, but showed a decrease of lipid peroxidation and LDH activity. These results suggest that $H_{2}O_{2}$ has a neurotoxic effect on cultured spinal dorsal root ganglion neurons from mice and that the herb extract, Ramulus et Uncus Uncariae (REUU), was very effective in protecting $H_{2}O_{2}$ induced neurotoxicity by decreasing lipid peroxidation and LDH activity.

  • PDF

하수오가 유기수은으로 손상된 생쥐의 배양대뇌신경세포에 미치는 영향에 관한 연구 (Study on the Effect of Radix polygoni Multiflori on Cultured Mouse Cerebral Neurons Damaged by Organic Mercury)

  • 유교상;이용석;손영우;홍기연
    • 동의생리병리학회지
    • /
    • 제16권6호
    • /
    • pp.1134-1137
    • /
    • 2002
  • To investigate the neurotoxic effect of organic chloride on cultured mouse cerebral neurons, cytotoxic effect was measured by MTT assay after cultured cerebral neurons were incubated with various concentrations of methyl mercuric chloride(MMC) for 24 hours. The protective effect of Radix Polygoni Multiflori(RPM) on MMC-induced neurotoxicity was also examined in these cultures. MMC decreased cell viability of cultured mouse cerebral neurons remarkably in a dose- and time-dependent manners. In protective effect of RPM it was remarkably effective in blocking the neuroxicity induced by MMC. From aboved the results, it is suggested that MMC induce neurotoxicity, and the herba extract, RPM is very effective in preventing MMC-induced cytotoxicity on cultured mouse cerebral neurons.