• Title/Summary/Keyword: Cultivation region

Search Result 448, Processing Time 0.034 seconds

Comparative Analysis of Cultivation Region of Angelica gigas Using a GC-MS-Based Metabolomics Approach (GC-MS 기반 대사체학 기술을 응용한 참당귀의 산지비교분석)

  • Jiang, Guibao;Leem, Jae Yoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2016
  • Background: A set of logical criteria that can accurately identify and verify the cultivation region of raw materials is a critical tool for the scientific management of traditional herbal medicine. Methods and Results: Volatile compounds were obtained from 19 and 32 samples of Angelica gigas Nakai cultivated in Korea and China, respectively, by using steam distillation extraction. The metabolites were identified using GC/MS by querying against the NIST reference library. Data binning was performed to normalize the number of variables used in statistical analysis. Multivariate statistical analyses, such as Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) were performed using the SIMCA-P software. Significant variables with a Variable Importance in the Projection (VIP) score higher than 1.0 as obtained through OPLS-DA and those that resulted in p-values less than 0.05 through one-way ANOVA were selected to verify the marker compounds. Among the 19 variables extracted, styrene, ${\alpha}$-pinene, and ${\beta}$-terpinene were selected as markers to indicate the origin of A. gigas. Conclusions: The statistical model developed was suitable for determination of the geographical origin of A. gigas. The cultivation regions of six Korean and eight Chinese A. gigas. samples were predicted using the established OPLS-DA model and it was confirmed that 13 of the 14 samples were accurately classified.

Effect of Nitrogen Application Rates on Nitrous Oxide Emission during Crop Cultivations in Upland Soil

  • Lee, Jong-Eun;Yun, Yeo-Uk;Choi, Moon-Tae;Jung, Suck-Kee;Nam, Yun-Gyu;Pramanik, Prabhat;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.205-211
    • /
    • 2012
  • BACKGROUND: Generally, nitrogen (N) fertilization higher than the recommended dose is applied during vegetable cultivation to increase productivity. But higher N fertilization also increases the concentrations of nitrate ions and nitrous oxide in soil. In this experiment, the impact of N fertilization was studied on nitrous oxide ($N_2O$) emission to standardize the optimum fertilization level for minimizing $N_2O$ emission as well as increasing crop productivity. Herein, we developed $N_2O$ emission inventory for upland soil region during red pepper and Chinese milk vetch cultivation. METHODS AND RESULTS: Nitrogen fertilizers were applied at different rates to study their effect on $N_2O$ emission during red pepper and Chinese milk vetch cultivation. The gas samples were collected by static closed chamber method and $N_2O$ concentration was measured by gas chromatography. The total $N_2O$ flux was steadily increased due to increasing N fertilization level, though the overall pattern of $N_2O$ emission dynamics was same. Application of N fertilization higher than the recommended dose increased the values of both seasonal $N_2O$ flux (94.5% for Chinese cabbage and 30.7% for red pepper) and $N_2O$ emission per unit crop yield (77.9% for Chinese cabbage and 23.2% for red pepper). Nitrous oxide inventory revealed that the $N_2O$ emission due to unit amount of N application from short-duration vegetable field in fall (autumn) season (6.36 kg/ha) was almost 70% higher than that during summer season. CONCLUSION: Application of excess N-fertilizers increased seasonal $N_2O$ flux especially the $N_2O$ flux per unit yield during both Chinese cabbage and red pepper cultivation. This suggested that the higher N fertilization than the recommended dose actually facilitates $N_2O$ emission than boosting plant productivity. The $N_2O$ inventory for upland farming in temperate region like Korea revealed that $N_2O$ flux due to unit amount of N-fertilizer application for Chinese cabbage in fall (autumn) season was comparatively higher than that of summer vegetables like red pepper. Therefore, the judicious N fertilization following recommended dose is required to suppress $N_2O$ emission with high vegetable productivity in upland soils.

Variation in Antioxidant Components of Black Soybean as Affected by Variety and Cultivation Region (재배지역에 따른 검정콩 항산화 성분의 함량변이)

  • Yi, Eun-Seob;Yi, Yong-Seon;Yoon, Seong-Tak;Lee, Hyuk-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • Aiming at development of region specialized crop, this study was conducted to clarify variety and cultivation region dependent on antioxidative compounds in black soybean seeds. For this purpose two black soybean varieties (Ilpumgeomjeongkong and Cheongjakong) were cultivated in 3 different regions (Hwaseong in Gyeonggido, Naju in Jeollanamdo and Jinju in Gyeongsangnamdo) in 2004 and 2005, and harvested seeds were used for isoflavone, anthocyanin and tocopherol contents along with electron donating ability-based antioxidative activities measurements. 100 grain weight between two varieties were not significantly different, but Hwaseong district showed higher 100 grain weight compared to Jinju and Naju. Ilpumgeomjeongkong was higher total isoflavone content ($1,064.9{\mu}g/g$) compared to Cheongjakong ($801.3{\mu}g/g$) in 2004, whereas Cheongjakong showed higher in 2005 compared to Ilpumgeomjeongkong. The highest isoflavone content was obtained in Hwaseong district in 2004, whereas it is the reverse in 2005 that Jinju district showed the highest isoflavone content. In total anthocyanin content, Ilpumgeomjeongkong (7.22 mg/g) was higher than that of Cheongjakong (6.83 mg/g), and Jinju district showed the highest total anthocyanin content (9.16 mg/g) compared to Naju and Hwaseong cultivating districts in their three cultivating districts. Total tocopherol content showed no significant difference between two varieties, but Hwaseong ($217.2{\mu}g/g$) and Jinju ($216.3{\mu}g/g$) districts showed higher content compared to Naju ($189.7{\mu}g/g$) among three cultivating districts. In tocopherol content ratio, $\gamma$-tocopherol was the highest from 56.2% to 59.9%. In electron donating ability (EDA) between two cultivars, Ilpumgeomjeongkong was significantly higher than Cheongjakong, and Naju was the highest of 55.6% among three cultivating districts.

Application of Drone Images to Investigate Biomass Management Practices and Estimation of CH4 Emissions from Paddy Fields (드론영상을 활용한 논 유기물 관리 인자 조사 및 메탄가스 배출량 산정)

  • Park, Jinseok;Jang, Seongju;Kim, Hyungjoon;Hong, Rokgi;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.39-49
    • /
    • 2020
  • Rice paddy cultivation is one of the major sources in methane (CH4) emission of which accurate assessment would be a prerequisite for agricultural greenhouse gas management. Biomass treatment in paddy fields is an important factor that affects CH4 emissions and thus needs to be taken into account. The objectives of this study were to apply drone images to investigate organic matter practices and to incorporate into the estimation of CH4 emissions from paddy fields. Three study areas were selected by one from each of the three different regions of Yeongnam, Honam and Jungbu, which are the most active region in paddy cultivation. The eBee drone was used to take images of the study sites twice a year; Jul mid-season for identifying rice cultivation area; Jan for investigating rice straw management and winter crop cultivation. Based on biomass management practices, different emissions factors were assigned on an individual paddy field and CH4 emmisions were estimated by multiplying respective areas. The ratios of rice straw application and winter crop cultivation were 1.4% and 37.2% in Hapcheon, 1.3% and 19.8% in Gimje, and 0.0% and 0.5% in Dangjin, respectively. The CH4 emissions estimates for respective sites were 0.40 ton CH4/year/ha, 0.34 ton CH4/year/ha, and 0.29 ton CH4/year/ha. On average, estimated CH4 emissions of this study were 28.5% less than the current Tier 2 CH4 emission estimation method.

Comparison of Growth Characteristics and General Component Content of Corn According to the Sowing Date in the Central Region of Korea

  • Youngchul Yoo;Mi-Jin Chae;Seuk Ki Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.97-97
    • /
    • 2022
  • The yield characteristics of corn for feed by sowing period and the crude protein, crude fat, and coarse flour contents of grain in the harvesting period were compared. The varieties are Kwangpyeongok(KPO), Dapyeongok(DPO) and Pyeonggangok(PGO), and cultivation was tested by the National Food Engineering Department and the Central Crop Department. It was sown at a planting distance of 70×25cm on April 15, June 14, and July 15, 2021, and the amount of fertilizer was applied through soil inspection. For the growth characteristics, plant height, biomass and grain weight were investigated after 50 days of sowing, and general components were analyzed by drying and pulverizing each seed. Compared to the results of sowing in April, which is the right time to sow corn, all three varieties sown on June 14 showed an increase in biomass. In the case of sowing on July 15, the fresh weight of KPO and DPO decreased, and the grain weight of KPO and PGO decreased by 10-20% compared to the sowing in April. There was no significant difference in the crude protein content of grain according to the sowing seasons in April and June, but decreased in the corn sown in July. The crude fat content was highest in KPO sown on June 14 and DPO sown on July 15. Combining the yield and general composition results, it is thought that the cultivation of corn for feed in Suwon in the central part can be sown by mid-June.

  • PDF

Characterization of Potato Scab Pathogens (Streptomyces Species) in Korea

  • Park, Duck-Hwan;Shrestha, Rosemary;Hur, Jang-Hyun;Lim, Chun-Keun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.162-165
    • /
    • 2005
  • Potato scab, an important disease that affects developing tubers, causes a major problem in potato cultivation. The major potato cultivation areas in Korea are located in two Northern provinces, Gangwon and Gyeonggi, and two Southern provinces, Jeju island, and South Jeolla. In these areas, potato scab is widely distributed and has caused severe problem in potato cultivation. Therefore, potato-growing areas were surveyed for identification and distribution of potato scab pathogens from 1996 to 1999. Pathogenic Streptomyces strains were isolated from potato scab lesions and six representative Streptomyces species were characterized based on their phenotypic and molecular characteristics including, pathogenicity, physiological and morphological properties, analyses of 16SrRNA genes and 16S-23S ITS region, DNA relatedness, production of thaxtomin A, and the presence of nec1 and ORFtnp gene homologs. Three species were identified as previously described Streptomyces scabies, S. turgidiscabies, and S. acidiscabies, while other three species having distinct phenotypics properties were identified as novel S. luridiscabiei, S. puniciscabiei, and S. niveiscabiei.

  • PDF

Effect of Herbicide Combinations on Bt-Maize Rhizobacterial Diversity

  • Valverde, Jose R.;Marin, Silvia;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2014
  • Reports of herbicide resistance events are proliferating worldwide, leading to new cultivation strategies using combinations of pre-emergence and post-emergence herbicides. We analyzed the impact during a one-year cultivation cycle of several herbicide combinations on the rhizobacterial community of glyphosate-tolerant Bt-maize and compared them to those of the untreated or glyphosate-treated soils. Samples were analyzed using pyrosequencing of the V6 hypervariable region of the 16S rRNA gene. The sequences obtained were subjected to taxonomic, taxonomy-independent, and phylogeny-based diversity studies, followed by a statistical analysis using principal components analysis and hierarchical clustering with jackknife statistical validation. The resilience of the microbial communities was analyzed by comparing their relative composition at the end of the cultivation cycle. The bacterial communites from soil subjected to a combined treatment with mesotrione plus s-metolachlor followed by glyphosate were not statistically different from those treated with glyphosate or the untreated ones. The use of acetochlor plus terbuthylazine followed by glyphosate, and the use of aclonifen plus isoxaflutole followed by mesotrione clearly affected the resilience of their corresponding bacterial communities. The treatment with pethoxamid followed by glyphosate resulted in an intermediate effect. The use of glyphosate alone seems to be the less aggressive one for bacterial communities. Should a combined treatment be needed, the combination of mesotrione and s-metolachlor shows the next best final resilience. Our results show the relevance of comparative rhizobacterial community studies when novel combined herbicide treatments are deemed necessary to control weed growth.

Discrimination Model of Cultivation Area of Alismatis Rhizoma using a GC-MS-Based Metabolomics Approach (GC-MS 기반 대사체학 기법을 이용한 택사의 산지판별모델)

  • Leem, Jae-Yoon
    • YAKHAK HOEJI
    • /
    • v.60 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • Traditional Korean medicines may be managed more scientifically, through the development of logical criterion to verify their cultivation region. It contributes to advance the industry of traditional herbal medicines. Volatile compounds were obtained from 14 samples of domestic Taeksa and 30 samples of Chinese Taeksa by steam distillation. The metabolites were identified by NIST mass spectral library in the obtained gas chromatography/mass spectrometer (GC/MS) data of 35 training samples. The multivariate statistical analysis, such as Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), were performed based on the qualitative and quantitative data. Finally trans-(2,3-diphenylcyclopropyl)methyl phenyl sulfoxide (47.265 min), 1,2,3,4-tetrahydro-1-phenyl-naphthalene (47.781 min), spiro[4-oxatricyclo[5.3.0.0.(2,6)]decan-3-one-5,2'-cyclohexane] (54.62 min), 6-[7-nitrobenzofurazan-4-yl]amino-morphinan-4,5-epoxy (54.86 min), p-hydroxynorephedrine (55.14 min) were determined as marker metabolites to verify candidates for the origin of Taeksa. The statistical model was well established to determine the origin of Taeksa. The cultivation areas of test samples, each 3 domestic and 6 Chinese Taeksa were predicted by the established OPLS-DA model and it was confirmed that all 9 samples were precisely classified.

Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

  • Kim, Ji-Su;Kang, Nam Jun;Kwak, Youn-Sig;Lee, Choungkeun
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-${\alpha}$, and ${\beta}$-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the ${\beta}$-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region.

Development of a Selective Medium for Surveillance of Fusarium Head Blight Disease

  • Hosung Jeon;Jung Wook Yang;Donghwan Shin;Donggyu Min;Byung Joo Kim;Kyunghun Min;Hokyoung Son
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • Fusarium head blight (FHB), predominantly caused by Fusarium graminearum and F. asiaticum, is a significant fungal disease impacting small-grain cereals. The absence of highly resistant cultivars underscores the need for vigilant FHB surveillance to mitigate its detrimental effects. In 2023, a notable FHB outbreak occurred in the southern region of Korea. We assessed FHB disease severity by quantifying infected spikelets and grains. Isolating fungal pathogens from infected samples often encounters interference from various microorganisms. We developed a cost-effective, selective medium, named BGT (Burkholderia glumae Toxoflavin) medium, utilizing B. glumae, which is primarily known for causing bacterial panicle blight in rice. This medium exhibited selective growth properties, predominantly supporting Fusarium spp., while substantially inhibiting the growth of other fungi. Using the BGT medium, we isolated F. graminearum and F. asiaticum from infected wheat and barley samples across Korea. To further streamline the process, we used a direct PCR approach to amplify the translation elongation factor 1-α (TEF-1α) region without a separate genomic DNA extraction step. Phylogenetic analysis of the TEF-1α region revealed that the majority of the isolates were identified as F. asiaticum. Our results demonstrate that BGT medium is an effective tool for FHB diagnosis and Fusarium strain isolation.