• Title/Summary/Keyword: Cultivation region

Search Result 448, Processing Time 0.036 seconds

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Farming to Forest in Jawoon-ri, Kangwon using the SATEEC ArcView GIS System (SATEEC ArcView GIS 시스템을 이용한 홍천군 자운리 유역 무허가경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1300-1304
    • /
    • 2008
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses (including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView GIS system was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it is expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha (30.83%) and 103.64 ha (67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it is expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Efficient Utilisation of Credit by the Farmer - Borrowers in Chittoor District of Andhra Pradesh, India - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • The present study has aimed at analyzing the technical and scale efficiencies of credit utilization by the farmer-borrowers in Chittoor district of Andhra Pradesh, India. DEA approach was followed to analyze the credit utilization efficiency and to analyze the factors influencing the credit utilization efficiency, log-linear regression analysis was attempted. DEA analysis revealed that, the number of farmers operating at CRS are more in number in marginal farms (40%) followed by other (35%) and small (17.5%) farms. Regarding the number of farmers operating at VRS, small farmers dominate the scenario with 72.5 per cent followed by other (67.5%) and marginal (42.5%) farmers. With reference to scale efficiency, marginal farmers are in majority (52.5%) followed by other (47.5%) and small (25%) farmers. At the pooled level, 26.7 per cent of the farmers are being operated at CRS, 63 per cent at VRS and 32.5 per cent of the farmers are either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Nearly 58, 15 and 28 percents of the farmers in the marginal farms category were found operating in the region of increasing, decreasing and constant returns respectively. Compared to marginal farmers category, there are less number of farmers operating at CRS both in small farmers category (15%) and other farmers category (22.5%). At the pooled level, only 5 per cent of the farmers are operating at DRS, majority of the farmers (73%) are operating at IRS and only 22 per cent of the farmers are operating at CRS indicating efficient utilization of credit. The log-linear regression model fitted to analyze the major determinants of credit utilization (technical) efficiency of farmer-borrowers revealed that, the three variables viz., cost of cultivation and family expenditure (both negatively influencing at 1% significant level) and family income (positively influencing at 1% significant level) are the major determinants of credit utilization efficiency across all the selected farmers categories and at pooled level. The analysis further indicate that, escalation in the cost of cultivation of crop enterprises in the region, rise in family expenditure and prior indebtedness of the farmers are showing adverse influence on the credit utilization efficiency of the farmer-borrowers.

Determination of Marginal Sowing Date for Soybean in Paddy Field Cultivation in the Southern Region of Korea

  • Park, Hyeon Jin;Han, Won-Young;Oh, Ki-Won;Shin, Sang-Ouk;Lee, Byong Won;Ko, Jong-Min;Baek, In Youl;Kang, Hang Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.104-112
    • /
    • 2016
  • A double-cropping system with soybean (Glycine max) following the cultivation of potato, garlic, and onion is widely adopted in the southern region of Korea. For this system, marginal dates for planting must be determined for profitable soybean yields, because the decision to plant soybean as a second crop is occasionally delayed by harvest of the first crop and weather conditions. In order to investigate the effect of planting date on soybean yield, three cultivars (early and late maturity) were planted on seven different dates from May 1 to July 30 in both paddy and upland fields across 2012 and 2013. Soybean yields were significantly different among the planting dates and the cultivars; however, the interaction between cultivar and planting date was not significant. Based on linear regression, the maximum yield of soybean was reached with a June 10 planting date, with a sharp decline in yield for crops planted after this date. The results of this study were consistent with those of a previous one that recommends early and mid-June as the optimum planting period. Regardless of soybean ecotype, a reduction in yield of greater than 20% occurred when soybean was planted after mid-July. Frost during soybean growth can reduce yields, and the late maturity cultivars planted on July 30 were damaged by frost before completing maturation and harvest; however, early maturity cultivars were safely harvested. For sufficient time to develop and reach profitable yields, the planting of soybean before mid-July is recommended.

Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation

  • Wenlingli Qi;Ming-Yuan Xue;Ming-Hui Jia;Shuxian Zhang;Qiongxian Yan;Hui-Zeng Sun
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.370-384
    • /
    • 2024
  • Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, meta-transcriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.

Research Progress on Leptotrombidium deliense

  • Lv, Yan;Guo, Xian-Guo;Jin, Dao-Chao
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.4
    • /
    • pp.313-324
    • /
    • 2018
  • This article reviews Leptotrombidium deliense, including its discovery and nomenclature, morphological features and identification, life cycle, ecology, relationship with diseases, chromosomes and artificial cultivation. The first record of L. deliense was early in 1922 by Walch. Under the genus Leptotrombidium, there are many sibling species similar to L. deliense, which makes it difficult to differentiate L. deliense from another sibling chigger mites, for example, L. rubellum. The life cycle of the mite (L. deliense) includes 7 stages: egg, deutovum (or prelarva), larva, nymphochrysalis, nymph, imagochrysalis and adult. The mite has a wide geographical distribution with low host specificity, and it often appears in different regions and habitats and on many species of hosts. As a vector species of chigger mite, L. deliense is of great importance in transmitting scrub typhus (tsutsugamushi disease) in many parts of the world, especially in tropical regions of Southeast Asia. The seasonal fluctuation of the mite population varies in different geographical regions. The mite has been successfully cultured in the laboratory, facilitating research on its chromosomes, biochemistry and molecular biology.

The Historical Geography of Land-Use and Agriculture Along the Lower Nam-River Floodplains (남강 하류 범람원의 토지이용과 농업형태 변화에 관한 연구)

  • Lee, Jeon;Son, Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.31-47
    • /
    • 1998
  • This paper deals with the historical geography of land-use and agriculture along the Lower Nam-River floodplains. The reclamation process of the river floodplains, the cultivation methods on the reclaimed lands, and the land-use patterns and processes are investigated. The Nam River, one of the major tributaries of the Nakdong River, flows through the boundary between Ham-An and Eu-Ryong Guns. Larger floodplains are located in Ham-An Gun. The floodplains of Ham-An Gun have been surveyed intensively in this study. In South Korea, the alluvial plains, mostly located along the river valleys, have been reclaimed to provide fertile agricultural lands. Those along the upper river valleys were reclaimed before those along the lower river valleys. The flood-plains of Han-An Gun were reclaimed to be the largest agricultural lands of the Gun. The natural levees along the Lower Nam-River Valley were identified before the reclamation processes but now hardly identified. Relatively larger floodplains are located along the tributary streams of the Nam River. Often there are low-lying back swamps between the natural levees and the hills/mountains that rise above the floodplains. The back swamps, called 'natural bog lands' in this region, have been reduced in size and in number through reclamation for the purpose of agricultural and industrial land-uses. Now about ten 'natural bog lands' are found in the Ham-An floodplains, and some of them are being reclaimed for the industrial land-use. This study suggests the emergent need of conservation for the remaining 'natural bog lands' in terms of ecology. Seven agricultural fields of large size, originated from the Nam-River floodplains, are identified in this study: Kun(큰들), Chung-Am(정암들), Chang-chi(장지들), Baek-San(백산들), Ha-Ki(하기들), Gu-Hae(구혜들), and Chang-Po(장포들) fields. The Kun field was reclaimed during the Japanese control and the Gu-Hae, in the 1950s. All of those except the above two fields were reclaimed after the mid-1960s. The Nam-River Dam in Chinju, completed in 1969, contributed the reclamation processes along the Lower Nam-River floodplains. The rice acreage of the region has been reduced slowly since 1970 but the rice production of the region has been relatively stable (Table 4). Rice culture had been the most important agriculture on the reclaimed lands for decades before the greenhouse vegetable cultivation became more important in the 1980s. Among the vegetables cultivated in the greenhouse, the watermelon is the dominantly leading one. Watermelons are usually harvested two or three times in a year though it is possible to harvest four times in one year. The rotation of watermelons and rice is common in the region. It is known the physical conditions of the Nam-River floodplains in Ham-An Gun is the most suitable for watermelon cultivation in South Korea.

  • PDF

Variation of Bolting at Cultivation of Different Regions and Molecular Characterization of FLC homologs in Angelica gigas Nakai (재배 지대에 따른 참당귀의 추대 변이와 FLC 유전자 특성)

  • Kim, Young-Guk;Yeo, Jun-Hwan;An, Tae-Jin;Han, Sin-Hee;Ahn, Young-Sup;Park, Chung-Beom;Jang, Yun-Hee;Kim, Jeong-Kook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.359-364
    • /
    • 2012
  • This study were carried out to find bolting response of cultivation in different regions and to isolate FLC (FLOWERING LOCUS C) homologs in Angelica gigas Nakai. The mean temperature of different regions, ordering in altitude, were as follows: 100 m > 350 m > 530 m > 700 m. The largest amount of rainfall was occurred in the region of 350 m while the longest time of sunshine was occurred in the region of 100 m. The content of soil chemical properties in regions showed pH 6.2 ~ 7.4, T-N 0.17 ~ 26, organic mater $1{\sim}32gkg^{-1}$, $P_2O_5$ ${151{\sim}664_{mgkg}}^{-1}$, exchangeable potassium and calcium and magnesium were 0.78 ~ 1.15, 3.9 ~ 10.0, ${0.7{\sim}3.2_{cmol}}^{+kg-1}$. L5 line of A. gigas was occurred in bolting at all regions, but the bolting ratio was 60.0% in 700 m region with non-mulching treatment. Manchu of A. gigas was not occurred in bolting at all regions. The accumulation bolting ratio of L5 line by non-mulching was higher than that of mulching as 90.4% and 72.8% in 100 m region. The MADS-box transcription factor FLC is one of the well-known examples as a strong floral repressor. We decided to isolate FLC homologs from A. gigas as a starting point of flowering mechanism research of this plant. We have isolated two RT-PCR products which showed very high amino acid sequence homology to Arabidopsis FLC.

Studies on establishment rate of direct seeded rice in relay intercropping system

  • Maki, Natsumi;Yasumoto, Satoko;Kojima, Makoto;Ohshita, Yasuo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.186-186
    • /
    • 2017
  • Relay intercropping system of direct seeded rice and winter cereal is labor saving cultivation and has high land use efficiency in Japan. In this system, rice seeds are direct seeded into inter-row space of winter cereals (wheat or barley) in March or April. If the direct seeding of rice is conducted before stem elongation phase or using suitable seeder, these are little effect to yield of winter cereals. Though the seeds are generally thiuram treated, it's a matter that seedling establishment rate (SER) of direct seeded rice is low and unstable. The cause of low SER has not been revealed. In present study, with the aim to reveal causes of low SER, we conducted experiments and investigated the SER, and analyzed some factors that might affect SER. Experiment1: In 2015, 2016, we buried rice seeds underground, and investigated the transition of the seed survival rates (SSR). Seeds were thiuram-treated or non-treated. In 2 periods, SSR of thiuram-treated seeds were significantly higher than non-treated seeds. In 2016, thiuram-treated seeds were high in SSR (almost 75%) at April 30th, but low SER (10~27%) after harvest of winter cereals. Therefore, almost all of seed death might have been happen after germination. Analysis 1: We investigated the SER and cultivation conditions in Ibaraki pref. for several years. Meteorological factors were referred from the nearest point of AMeDAS. From mean temperature (MT) among 5days after and before the day, we divided the period of seeding ~June 20 to phase1~4. We defined each phase as below; Phase1: $MT{\leq}10^{\circ}C$, Phase2: $10^{\circ}C<MT{\leq}15^{\circ}C$, Phase3:$15^{\circ}C<MT{\leq}20^{\circ}C$, Phase4: $MT>20^{\circ}C$. We analyzed the correlation of SER and meteorological factors by each phase. Total number of days in phase 1~4 was significantly negative correlated with SER. In phase1, total rain fall and number of soil wetting days were significantly negative correlated with SER. In phase2~4, only MT was significantly positive correlated with SER. This result suggested that rainfalls in phase1 declined seed vigor to emergence from soil surface, by repeated water absorption and re-dry. From these present studies, it was suggested that one of factors of low SER of direct seeded rice in relay intercropping system is changing of water condition by rainfalls in phase1 ($MT{\leq}10^{\circ}C$). To improve SER, it's necessary to consider something seed treatments such as prevent water absorption during phase1. However, 58~60% of seeds seemed to die during May. It's suggested that, if seeds are thiuram treated, almost all of seeds can germinate underground, but the seed vigor to emergence from soil surface are insufficient. Further studies are needed to reveal the rest causes that is happening during emergence from soil surface.

  • PDF

Polyphenol Content and Yield Variation of Red-colored Cultivars Depends on Transplanting Date in Southern Plain Region of Korea (남부평야지에서 적미 품종의 이앙시기에 따른 폴리페놀 함량 및 수량변이)

  • Bae, Hyun Kyung;Oh, Seong Hwan;Hwang, Jung Dong;Seo, Jong Ho;Kim, Sang Yeol;Oh, Myung Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.166-171
    • /
    • 2017
  • For high-quality colored rice production, the cultivation environment is a critical factor. The major environmental factor is temperature, which includes the accumulated and average temperature during vegetative and reproductive stages. Generally, during the cultivation period, the temperature can be controlled by shifting the transplanting date. This study was carried out to determine the optimum transplanting date for high-quality red-colored rice production. Four red-colored rice varieties (Jeokjinju, Jeokjinjuchal, Hongjinju, and Gunganghongmi) were used as test materials. The transplanting dates were May 20 and June 5, 20, and 30 in 2015~2016. The most variable factor controlled by the transplanting date was the grain filling rate. The varieties transplanted on June 30 showed low yields owing to the decrease in the grain filling rate. In contrast, the polyphenol content increased with increasing delay in the transplanting date. Collectively, these two results indicate that the optimum transplanting date was June 20. The average temperature for 30 days after the heading date (30DAH) highly affected the polyphenol content. A lower temperature during the 30DAH induced higher polyphenol contents but also caused low yield. The optimum 30DAH temperature for obtaining a higher yield and polyphenol content was $22{\sim}23^{\circ}C$. Using the average 30DAH and accumulated temperatures, the optimum transplanting date was calculated as June 18 to 24 in Miryang region. The optimum transplanting date of Kyeungsangnamdo region was approximately mid-June to early July, and that of Kyeungsangbukdo region was approximately early to mid-June.

Introduction of Spring Cultivation of Onions by Adapting the Plug Seedling System in the Middle Region of Korean Peninsula (중부지방에서 플러그 육묘에 의한 양파의 춘파재배 가능성)

  • Lee, Jung-Soo;Seong, Ki-Cheol;Sin, Young-An;Ro, Hee-Myong;Um, Young-Cheol
    • Horticultural Science & Technology
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2000
  • Cultivation of onions in Korean peninsula is so restricted to Southern region, mainly due to inadequate air temperature for the growth of onions in this region. This sometimes resulted in unstable supply of onions. The fluctuation of market prices mainly results from the limited production of onions in such restricted areas. Onions are usually transplanted at the end of fall and cultivated until the beginning of next summer. This study was designed to examine the possibility of extending production region of onions by adopting the plug seedling system, and the effects of plug seedling age, transplanting date, plug cell volume, and variety on the yield of onions were investigated. Transplanting date (Mar. 15 or Apr. 15) did not affect the yield of onions. However, 60-day-old seedlings produced significantly greater bulb yield (107.2 ton/ha) than those of 30- or 90- day-old seedlings. Bulb yields of seedlings raised in 128 and 72 cell trays were 125.0 and 120.8 ton/ha, which were significantly greater than those in other cell trays. Yield of seedlings raised in 406 cell trays was the lowest. Seedlings of mid-late 'Chenjuwhang' yielded 130.5 Ton/ha, which was significantly higher than those of other varieties. Considering the rainy season during early summer, we suggest that seedlings of onions raised for 60 days and transplanted on Mar. 15 should be advantageous in producing of marketable bulbs and that an early 'Yongbongwhang' should be the best variety.

  • PDF