• Title/Summary/Keyword: Cultivation area

Search Result 1,335, Processing Time 0.032 seconds

Data Analysis for Structural Design of Pleurotus Eryngii Cultivation Facilities (큰느타리버섯 재배사의 구조설계용 자료 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • This study was carried out to file up structural design data for optimizing Pleurotus eryngii growing houses. Design data are including current farm status of Pleurotus eryngii growing houses in the aspect of structural configuration as well as environmental conditions to be controlled and maintained inside. A structural analysis was performed for the on-farm structures as well as some structures modified and suggested through field survey and analysis. The results are summarized as follows. According to the results of status analysis, Pleurotus eryngii growing houses were categorized as arch-roofed simple type and sandwich panel type. Though the size of Pleurotus eryngii cultivation facilities were considerably diverse, the basic dimensions of Pleurotus eryngii cultivation facilities showed relatively similar pattern: more or less of 20m of length, $6.6\~7.0m$ of width, $4.6\~5.0m$ of peak height, $1.2\~1.6m$ of bed width, and 4 layers of bed. In the aspect of spatial use of cultivation facilities, suggested models were shown to be mostly reasonable in the aspect of heating and cooling, micro-meteorological stability, land use efficiency per unit floor area, etc.. Especially, the standard models suggested so far were thought to be not efficient in its surface area and spatial volume per unit floor area as well as its uneffective structural design in the area around ceiling. In the results of structural analysis for the models suggested through this study by using those section frames to be found on farms, the panel type structures of both single span and double span were estimated to be over designed, whereas arch-roofed pipe houses were mostly found to be under-designed.

Analysis of Nationwide Soil Chemical Trait for the Application of Standard Nitrogen Level in Rice Cultivation

  • Jinseok Lee;Jong-Seo Choi;Shingu Kang;Dae-Woo Lee;Woonho Yang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.121-121
    • /
    • 2022
  • When 7 kg·10a-1, which is less than the nitrogen standard application amount of 9 kg·10a-1, is applied, the protein content is lowered and the palatibility is improved. In order to examine the applicability of nitrogen fertilization of 7 kg·10a-1 nationwide, soil samples were collected from 240 paddy fields in 8 provinces in 2021, and the organic matter content, effective phosphoric acid, and effective silicic acid were analyzed for each sample. As a result of one-way ANOVA analysis between samples collected for each province, there was no significant difference in the content of organic matter, effective phosphoric acid, and effective silicic acid except for some provinces. The contents of organic matter was higher than the appropriate level(25 ~ 30 g·kg-1) except for Gyeongsangbuk-do, the effective phosphoric acid was higher than the appropriate level(80~120 mg·kg-1) in all provinces, and the effective silicic acid was lower than the appropriate level(157 ~ 180 mg·kg-1) except for Gyeonggi-do, Jeollanam-do and Gyeongsangnam-do. As a result of analyzing the recommended fertilization amount based on the nitrogen application amount of 7 kg·10a-1, 68.3% ofthe 240 samples were able to give nitrogen fertilizer less than 7.5 kg·10a-1, and the rest had to be given more than that to satisfy the standard fertilization amount. As a result of this study, 68.3% of rice paddies nationwide can be cultivated with a standard fertilization amount of 7 kg·10a-1, however it was thought that continuous nutrient management would be required for other paddies.

  • PDF

TIME SERIES ANALYSIS OF SPOT NDVI FOR IDENTIFYING IRRIGATION ACTIVITIES AT RICE CULTIVATION AREA IN SUPHANBURI PROVINCE, THAILAND

  • Kamthonkiae Daroonwan;Kiyoshe Honda;Hugh Turral
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.3-6
    • /
    • 2005
  • In this paper, the real scenario of water situation (e.g. water management, water availability and flooding) in an irrigated rice cultivation area in Suphanburi Province, Central-West Thailand is discussed together with the NDVI time series data. The result shown is derived by our classifier named 'Peak Detector Algorithm (PDA)'. The method discriminated 5 classes in terms of irrigation activities and cropping intensities, namely, Non-irrigated, Poorly irrigated - 1 crop/year, Irrigated - 2 crops/year, Irrigated - 3 crops/year and Others (no cultivation happens in a year or other land covers). The overall accuracy of all classified results (1999-2001) is around $77\%$ against independent ground truth data (general activities or function of an area). In the classified results, spatial and temporal inconsistency appeared significantly in the Western and Southern areas of Suphanburi. The inconsistency resulted mainly by anomaly of rainfall pattern in 1999 and their temporal irrigation activity. The algorithm however, was proved that it could detect actual change of irrigation status in a year.

  • PDF

A Study on Onion Wholesale Price Forecasting Model (양파 출하시기 도매가격 예측모형 연구)

  • Nam, Kuk-Hyun;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.22 no.4
    • /
    • pp.423-434
    • /
    • 2015
  • This paper predicts the onion's cultivation areas, yields per unit area, and wholesale prices during ship dates by using wholesale price data from the Korea Agro-Fisheries & Food Trade Corporation, the production data from the Statistics Korea, and the weather data from the Korea Meteorological Administration with an ARDL model. By analyzing the data of wholesale price, rural household income and rural total earnings, onion cultivation areas in 2015 are estimated to be 21,035, 17,774 and 20,557(ha). In addition, onion yields per unit area of South Jeolla Province, North Gyeongsang Province, South Gyeongsang Province, Jeju Island, and the whole country in 2015 are estimated to be 5,980, 6,493, 6,543, 6,614, 6,139 (kg/10a) respectively. By using onion production's predictive value found from onion's cultivation areas and yields per unit area in 2015, the onion's wholesale prices in June are estimated to be 780 won, 1,100 won, and 820 won for each model. Predicted monthly price after the onion's ship dates is analyzed to exceed 1,000 won after August.

Performance Evaluation of Deep Learning Model according to the Ratio of Cultivation Area in Training Data (훈련자료 내 재배지역의 비율에 따른 딥러닝 모델의 성능 평가)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1007-1014
    • /
    • 2022
  • Compact Advanced Satellite 500 (CAS500) can be used for various purposes, including vegetation, forestry, and agriculture fields. It is expected that it will be possible to acquire satellite images of various areas quickly. In order to use satellite images acquired through CAS500 in the agricultural field, it is necessary to develop a satellite image-based extraction technique for crop-cultivated areas.In particular, as research in the field of deep learning has become active in recent years, research on developing a deep learning model for extracting crop cultivation areas and generating training data is necessary. This manuscript classified the onion and garlic cultivation areas in Hapcheon-gun using PlanetScope satellite images and farm maps. In particular, for effective model learning, the model performance was analyzed according to the proportion of crop-cultivated areas. For the deep learning model used in the experiment, Fully Convolutional Densely Connected Convolutional Network (FC-DenseNet) was reconstructed to fit the purpose of crop cultivation area classification and utilized. As a result of the experiment, the ratio of crop cultivation areas in the training data affected the performance of the deep learning model.

Comparative analysis of growth, yields and grain quality of rice among no-tillage dry-seeding, wet-hill-seeding and transplanting

  • Choi, Jong-Seo;Kim, Sook-Jin;Kang, Shingu;Park, Jeong Hwa;Yoon, Young-Hwan;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.208-208
    • /
    • 2017
  • No-tillage practices are expected to provide several benefits such as increasing soil organic matter, reducing labor time and saving energy cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil properties in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. Rice seedling establishment was slightly higher in no-tillage dry-seeding treatment ($145seedling\;m^{-2}$) than wet-hill-seeding on puddled paddy treatment ($111seedling\;m^{-2}$), but the seedling establishment in both treatments fell within the optimum range for direct seeding rice cultivation. Plant height, number of tillers and chlorophyll content (SPAD value) of rice in no-tillage dry-seeding treatment were higher than those of the other treatments. However, no significant differences in grain yield was observed among three cultivation methods, and the yield ranged 5.8 to $5.9ton\;ha^{-1}$. The heading date from seeding under no-tillage dry-seeding treatment was on average 109 days, which was similar to that under machine transplanting treatment (112 days), but 10 days later than that under wet-hill-seeding on puddled paddy treatment (99 days). Grain quality characteristics grown in no-tillage dry-seeding were similar to those grown in the other cultivation methods. These results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yields and grain quality.

  • PDF

Analysis of Land Cover Change from Paddy to Upland for the Reservoir Irrigation Districts (토지피복지도를 이용한 저수지 수혜구역 농경지 면적 및 변화 추이 분석)

  • Kwon, Chaelyn;Park, Jinseok;Jang, Seongju;Shin, Hyungjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.27-37
    • /
    • 2021
  • Conversion of rice paddy field to upland has been accelerated as the central government incentivizes more profitable upland crop cultivation. The objective of this study was to investigate the current status and conversion trend from paddy to upland for the reservoir irrigation districts. Total 605 of reservoir irrigation districts whose beneficiary area is greater than 200 ha were selected for paddy-to-upland conversion analysis using the land cover maps provided by the EGIS of the Ministry of Environment. The land cover data of 2019 was used to analyze up-to-date upland conversion status and its correlation with city proximity, while land cover change between 2007 and 2019 was used for paddy-to-upland conversion trend analysis. Overall 14.8% of the entire study reservoir irrigation area was converted to upland cultivation including greenhouse and orchard areas. Approximately the portion of paddy area was reduced by 17.8% on average, while upland area was increased by 4.9% over the 12 years from 2007 to 2019. This conversion from paddy to upland cultivation was more pronounced in the Gyoenggi and Gyeongsang regions compared to other the Jeolla and Chungcheong provinces. The increase of upland area was also more notable in proximity of the major city. This study findings may assist to identify some hot reservoir districts of the rapid conversion to upland cultivation and thus plan to transition toward upland irrigation system.

An Analysis of Shifting Cultivation Areas in Luang Prabang Province, Lao PDR, Using Satellite Imagery and Geographic Information Systems (위성영상과 지리정보시스템을 이용한 라오스 루앙프라방 지역의 화전지역 분석)

  • 조명희
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.43-53
    • /
    • 1994
  • By Using MOS-1 satellite image(taken on 24 April 1990, after slash and burn), Shifting cultivation areas were estimated for the sub-basin area. In tropical region to analyse the correlation between shifting cultivation rate and bifurcation rate network which was calculated from topographic map, PC Arc - Info and IDRISI GIS software were used. As the distribution rate of shifting cultivation increases, the bifurcation rate is high. From the correlation analysis between the shifting cultivation and drainage network, it was found that shifting cultivation leads to land degradation and head erosion at the stream valley. To prevent such problems, it is mecessary that shifting cultivation areas should be converted to permanent paddy fields.

Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가)

  • Seong, Seon-kyeong;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.823-833
    • /
    • 2020
  • In order to stably produce crops, there is an increasing demand for effective crop monitoring techniques in domestic agricultural areas. In this manuscript, a cultivation area extraction method by using deep learning model is developed, and then, applied to satellite imagery. Training dataset for crop cultivation areas were generated using RapidEye satellite images that include blue, green, red, red-edge, and NIR bands useful for vegetation and environmental analysis, and using this, we tried to estimate the crop cultivation area of onion and garlic by deep learning model. In order to training the model, atmospheric-corrected RapidEye satellite images were used, and then, a deep learning model using FC-DenseNet, which is one of the representative deep learning models for semantic segmentation, was created. The final crop cultivation area was determined as object-based data through combination with cadastral maps. As a result of the experiment, it was confirmed that the FC-DenseNet model learned using atmospheric-corrected training data can effectively detect crop cultivation areas.

Rice variety IPB3S and IPB prima production technology to support food self-sufficiency in Indonesia

  • Aswidinnoor, Hajrial;Guntoro, Dwi;Sugiyanta, Sugiyanta;Wiyono, Suryo;Widodo, Widodo;Wijaya, Hermanu;Nindita, Anggi;Furqoni, Hafith
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.362-362
    • /
    • 2017
  • Dissemination of IPB3S rice variety combined with cultivation technology named IPB Prima was aimed to introduce IPB research product particularly for IPB rice variety with high-yield character that is IPB3S. The rice variety IPB3S and IPB Prima cultivation technology was expected to be one of solution to improve rice productivity and accelerate to food self-sufficiency in Indonesia. Research sctivity was consist of three main research unit i.e. (1) Dissemination of IPB3S rice variety and IPB Prima production technology; (2) The development of Information and management web-based system (IMS) for planning and monitoring IPB3S and IPB Prima application distribution; and (3) The development of High-capacity grain drying system in Fluidized-bed drying ang in-store drying system. The objective of main research i.e. to introduce IPB high-yield rice variety, to accelerate rice productivity to support self-sufficiency, to develop integrated system model through fluidized and in-store drying, and to develop web-based management-information system in result analyzing IPB3S and IPB Prima distribution and technology application. The dissemination activities was arranged in two location. The first location was in Banyuwangi, East Java with total area 10.87 ha, consist of 8.91 ha planting area for IPB3S and 1.96 ha planting area for Ciherang. The second location is in Tegal, Middle Java with total planting area in 5 ha. The experiment was arranged in different treatment of varieties and cultivation method. The experiment consist of (1) rice variety Ciherang with conventional cultivation technology (P0); (2) rice variety Ciherang with IPB Prima cultivation technology (P1); (3) rice variety IPB3S with conventional cultivation technology (P2); (4) rice variety IPB3S with IPB Prima cultivation technology (P3). Planting distance for twin rows system is $50cm{\times}25cm{\times}12.5cm$. Planting distance for single row system is $25cm{\times}25cm$. The research result elucidated that productivity result in two location has different grades in similar trend. Experiment in Tegal resulted P0 result is $6.18ton\;ha^{-1}$, P1 result is $6.30ton\;ha^{-1}$, P2 result is $6.82ton\;ha^{-1}$, P3 result is $7.31ton\;ha^{-1}$. Experiment in Banyuwangi resulted optimum production of IPB3S variety productivity number are $7.29ton\;ha^{-1}$, while Ciherang are $6.73ton\;ha^{-1}$.

  • PDF