• Title/Summary/Keyword: Cultivable bacteria

Search Result 18, Processing Time 0.019 seconds

Disinfectant effectiveness of chlorhexidine gel compared to sodium hypochlorite: a systematic review with meta-analysis

  • Theodoro Weissheimer;Karem Paula Pinto;Emmanuel Joao Nogueira Leal da Silva;Lina Naomi Hashizume;Ricardo Abreu da Rosa;Marcus Vinicius Reis So
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.37.1-37.17
    • /
    • 2023
  • This study aimed to compare the disinfectant ability of chlorhexidine (CHX) gel and sodium hypochlorite (NaOCl). Systematic searches were conducted from inception until December 8th, 2022 (MEDLINE/PubMed, Cochrane Library, Web of Science, Scopus, Embase, and Grey Literature databases). Only randomized clinical trials were included. The revised Cochrane risk of bias tools for randomized trials were used to assess the quality of studies. Meta-analyses were performed. The overall quality of evidence was assessed through the Grading of Recommendations Assessment, Development, and Evaluation tool. Six studies were included. Five had a low risk of bias and 1 had some concerns. Three studies assessed bacterial reduction. Two were included in the meta-analysis for bacterial reduction (mean difference, 75.03 [confidence interval, CI, -271.15, 421.22], p = 0.67; I2 = 74%); and 3 in the meta-analysis for cultivable bacteria after chemomechanical preparation (odds ratio, 1.03 [CI, 0.20, 5.31], P = 0.98; I2 = 49%). Five studies assessed endotoxin reduction. Three were included in a meta-analysis (mean difference, 20.59 [CI, -36.41, 77.59], p = 0.48; I2 = 74%). There seems to be no difference in the disinfectant ability of CHX gel and NaOCl, but further research is necessary.

Distribution and Identification of Halophilic Bacteria in Solar Salts Produced during Entire Manufacturing Process (천일염 생산공정별 미생물 분포 조사 및 호염미생물 동정)

  • Na, Jong-Min;Kang, Min-Seung;Kim, Jin-Hyo;Jin, Yong-Xie;Je, Jeong-Hwan;Kim, Jung-Bong;Cho, Young-Sook;Kim, Jae-Hyun;Kim, So-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • In this study, we determined the changes in microbial numbers in solar salts according to the manufacturing process and storage duration. The salt samples were harvested from salt farms in Shinan (area 2) and Yeonggwang (area 1). They were serially diluted ten-fold and then placed on 4 kinds of cultivable media (mannitol salt agar, eosin methylene blue, plate count agar, and trypticase soy agar). After incubation, we obtained 62 halophilic isolates from the salt samples. Coliform and general bacteria were not detected in all salt samples. By 16S rRNA sequencing analysis, we found 12 kinds of halophilic bacteria belonging to the genera Halobacillus, Halomonas, Bacillus, Idiomarina, Marinobacter, Pseudoalteromonas, Vibrio, Salinivibrio, Virgibacillus, Alteromonas, Staphylococcus and some un-known stains. In our study, we discovered two novel species that have a 16S rDNA sequence similarity below 97%.

Cultivable Bacterial Community Analysis of Saeu-jeotgal, a Korean High-Salt-fermented Seafood, during Ripening (배양법을 이용한 새우젓갈 숙성과정 중 박테리아상 분석)

  • Jeong, Do-Won;Jung, Gwangsick;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.293-302
    • /
    • 2016
  • To determine the dominant bacterial species during the Saeu-jeotgal ripening process, the cultivable bacterial population was examined over a 135-day period using six different growth media. The greatest numbers of bacteria were identified when marine agar was used for culture, with maximum cell density identified at day 65 (2.51 × 107 colony forming units/g). Over the course of 135 days, the bacterial diversity was analyzed eight times. A total of 467 isolates, comprising 87 species from 42 genera, as well as 16 isolates belonging to previously unknown species, were identified. The number of species detected decreased from 39 at day 1 to 13 at day 135. The order of dominance at the genus level was as follows: Staphylococcus, Salimicrobium, Kocuria, and Psychrobacter. Staphylococcus and Salimicrobium accounted for 2% of the diversity at day 1, and then increased to 39% and 36%, respectively, at day 135. The dominant species Staphylococcus equorum, Salimicrobium salexigens, and Kocuria palustris accounted for 23.6%, 16.1%, and 10.9% of all isolates, respectively. Importantly, both St. equorum and Sm. salexigens remained viable at a NaCl concentration of 21% (w/v), which indicates their strong involvement in the ripening of Saeu-jeotgal.

Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea

  • Kim, Won-Il;Cho, Won-Kyong;Kim, Su-Nam;Chu, Hyo-Sub;Ryu, Kyoung-Yul;Yun, Jong-Chul;Park, Chang-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.777-790
    • /
    • 2011
  • To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: ${\alpha}$-proteobacteria, ${\beta}$- proteobacteria, and ${\gamma}$-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

Cultivable Microbial Diversity in Domestic Bentonites and Their Hydrolytic Enzyme Production

  • Seo, Dong-Ho;Cho, Eui-Sang;Hwang, Chi Young;Yoon, Deok Jun;Chun, Jeonghye;Jang, Yujin;Nam, Young-Do;Park, So-Lim;Lim, Seong-Il;Kim, Jae-Hwan;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • We have isolated and identified 72 bacterial strains from four bentonite samples collected at the mining areas located in Gyeongsangbuk-do, Republic of Korea, and measured their hydrolytic enzyme (${\alpha}$-amylase, protease, and cellulase) activities to identify the isolates with industrial-use potential. Most of the isolates belonged to the Bacillaceae, with minor portions being from the Paenibacillaceae, Micrococcaceae, and Bacillales Family XII at the family level. Of the strains isolated, 33 had extracellular ${\alpha}$-amylase activity, 30 strains produced cellulase, and 35 strains produced protease. Strain MBLB1268, having the highest ${\alpha}$-amylase activity, was identified as Bacillus siamensis ($0.38{\pm}0.06U/ml$). Bacillus tequilensis MBLB1223, isolated from Byi33-b, showed the highest cellulase activity ($0.26{\pm} 0.04U/ml$), whereas Bacillus wiedmannii MBLB1197, isolated from Zdb130-b, exhibited the highest protease activity ($54.99{\pm}0.78U/ml$). These findings show that diverse bacteria of the Bacillaceae family adhere to and exist in bentonite and are potential sources of industrially useful hydrolytic enzymes.

Effect of Moisture Content and Storage Periods on Nutrient Composition and Organic Acids Change in Triticale Round Bale Silage

  • Ilavenil Soundharrajan;Jeong-Sung Jung;Hyung Soo Park;Hyun Jeong Lee;Ouk‐Kyu Han;Ki-Choon Choi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.270-275
    • /
    • 2022
  • Livestock production costs are heavily influenced by the cost of feed, The use of domestically grown forages is more desirable for livestock feed production. As part of this study, triticale, which is an extremely palatable and easily cultivable crop in Korea, was used to produce low moisture silage bales with lactic acid bacteria (LAB) and then stored for different periods. We examined the nutrient content of silage, such as crude protein (CP), acid detergent fiber (ADF) and neutral detergent fiber (NDF), as well as their organic acids, including lactic acid, acetic acid, butyric acid, at different storage periods. The nutrient content of silages, such as crude protein, ADF, and NDF, did not change significantly throughout storage periods. Organic acid data indicated that lactic acid concentrations increased with increasing moisture contents and storage periods up to nine months. However, further extending storage to 12 months resulted in a reduction in the lactic acid content of all silages as well as an increase in their pH. Based on the present results, it suggested that the production of low moisture silage with the LAB may be able to preserve and maintain its quality without altering its nutritional composition. Also, the lactate content of the silage remained significant for at least nine months.

Characterization and phylogenetic analysis of halophilic bacteria isolated from rhizosphere soils of coastal plants in Dokdo islands (독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Lee, Myung-Chul;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • To study the halobacterial diversity at the rhizospheric soil of coastal plant native to Dokdo islands, several host plant were selected and its rhizospheric soil was sampled. Soil sample was diluted serially and pure isolation was done by sub-culture using marine agar media. 26 halophilic strains cultivable at the marine medium containig concentration of 9.0% sodium chloride were selected among total 161 isolates. Their partial 16S rRNA gene sequences extracted from genomic DNA were analyzed and partially identified. Furthermore, to identify their genetic relationship, phylogenetic tree was deduced. Total 26 strains were belongs to Firmicutes (30.8%), Gamma proteobacteria (53.8%), Bacteroidetes (7.7%), Alpha proteobacteria (7.7%), and Actinobacteria (7.7%). These results showed the specific difference from previous researches which has been reported the microbial flora of soil or sea water around the Dokdo islands. Furthermore, 4 among 26 halophilic strains grew at above 12.0% NaCl concentrated marine broth, and 2 strains Idiomarina abyssalis LM4H23 and Halomonas huangheensis AS4H13 grew at 15.0% concentration. These halophilic strains thought to overcoming the severe stress like high salt concentration or variation derived from Dokdo-specific climate and might have unknown, specific relationship with their host coastal plant native to Dokdo islands.

ANALYSIS ON THE PREDICTOR OF DISEASE PROGRESSION IN REFRACTORY PERIODONTITIS (난치성 치주염의 질환진행 예견 인자에 관한 분석)

  • Lee, Hae-Joon;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.109-126
    • /
    • 1993
  • Refractory periodontitis manifest progressive attachment loss in a rapid and unrelenting manner regardless of the type or frequency of therapy applied. The purpose of this study was ta evaluate the relation between the level of cytokines in GCF and periodontopathic microflora with disease activity of refractory periodontitis. Selection of patients with refractory periodontitis (7 males, 3 females) were made by long term clinical observation including conventional clinical history and parameters. Teeth that showed pocket depth greater than 6mm were selected as sample teeth. Subjects were examined at baseline and after 3 months. Prior to baseline test, individual acrylic stent was fabricated. Reference grooves were made on each sample tooth site. Pocket depth and attachment loss were measured by Florida Probe. Gingival index was measured at 4 sites each sample teeth. Disease activity was defined as attachment loss of ${\ge}$ 2.1mm, as determined by sequential probing and tolerance method. The pattern and amount of alveolar bone resorption was observed with quantitative digital subtraction image processing radiography. Morphological analysis of subgingival bacteria was taken by phase contrast microscopy. Predominant cultivable bacterial distribution and frequency were compared between disease-active and disease-inactive site using immunofluorescence microscopy and selective microbial culturing. Levels of $interleukin-l{\beta}$, 2, 4, 6 and $TNF-{\alpha}$ in GCF and blood serum sample were quantified by ELISA. In active sites, P. intermedia was significantly increased to compare with inactive site. $IL-1{\beta}$, IL-2, IL-6 and $TNF-{\alpha}$ in GCF were increased in active sites and IL-2 in serum was increased in active patients significantly. Alveolar bone loss in active site was correlated with $IL-1{\beta}$, IL-2 in GCF. And loss of attachment in active site was correlated with IL-2 in GCF. These results demonstrate that IL-2 in serum, $IL-1{\beta}$, IL-2, IL-6 and $TNF-{\alpha}$ in GCF, P, intermedia might be used as possible predictors of disease activity in refractory periodontitis before it is clinically expressed as attachment loss and quantitative alveolar bone change.

  • PDF