• Title/Summary/Keyword: Cucumber root exudates

Search Result 3, Processing Time 0.015 seconds

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Herbicidal Effects and Crop Selectivity of Sorgoleone, a Sorghum Root Exudate under Greenhouse and Field Conditions (온실과 포장조건에서 수수 추출물 Sorgoleone의 제초활성 및 작물 선택성)

  • Uddin, Md. Romij;Won, Ok-Jae;Pyon, Jong-Yeong
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.412-420
    • /
    • 2010
  • Weeds are known to cause enormous losses due to their interference in agro ecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard phytotoxicity of allelochemical sorgoleone, which is a major component of the hydrophobic root exudates of Sorghum bicolor was evaluated in different weed species and also its crop selectivity in greenhouse and field conditions. Sorgoleone strongly inhibited the growth of different weeds by pre-emergence and post-emergence applications both in greenhouse and field conditions. Post-emergence application of sorgoleone on 21-day-old weed seedlings had a greater inhibitory effect than the pre-emergence application. Again, broadleaf weed species were more susceptible than grass species to the application of sorgoleone at both stages of growth. Growth of broadleaf weed species was suppressed by greater than 80% for most of the weed species except a few species and among them the species Rumex japonicus and Galium spurium were completely suppressed at $200{\mu}g\;ml^{-1}$ sorgoleone. Like greenhouse trial, sorgoleone was more effective for broadleaf weed species followed by sedge and grass weed species in the field condition. The growth inhibition of weeds was slightly lower in field condition compared to greenhouse condition. The crop species like rice, barley, wheat, corn, perilla, tomato, soybean and Chinese cabbage were tolerant to sorgoleone while lettuce and cucumber were slightly susceptible to sorgoleone. Consequently, sorgoleone may be applied to control weeds in organic farms without affecting the growth of crop.