• 제목/요약/키워드: Cubic mesophase

검색결과 4건 처리시간 0.133초

Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating

  • Pan, Jia-Hong;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.418-422
    • /
    • 2005
  • By introducing spin-coating method to the evaporation induced self-assembly (EISA) process, a simple and reproducible route in controlling the mesophase of silica thin films has been developed for the first time in this work. When a comparatively solvent-rich Si-sol (The atomic ratio of TEOS : F127 : HCl : $H_2O$ : EtOH = 1 : 0.006 : 0.2 : 9.2 : 30) was used as coating solution, the mesophase of resultant silica films was selectively controlled by adjusting the spin-on speed. The cubic mesophase has been obtained from the coating at a low rpm, such as 600 rpm, while the 2-D hexagonal mesophase is formed at a high rpm, such as 2,500 rpm. At a medium coating speed, a mixture of cubic and hexagonal mesophase has been found in the fabricated films. The present results confirm that the evaporation rate of volatile components at initial step is critical for the determination of mesopore structures during the EISA process.

Hydrothermal Synthesis of Mesostructured Vanadium Oxide and Application of UV-Ozone Treatment

  • Chang, Ju-Yeon;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.613-616
    • /
    • 2003
  • Effect on hydrothermal treatment of lamellar vanadium oxides was investigated and the formation of hexagonal and cubic mesophase was found. This lamellar materials were prepared by mixing of cetyltrimethylammonium-bromide and pH-controlled sodium metavanadate solution. Thermal method and UV/O₃treatment were applied to extract organic template. The structure of resulting product was studied by powder X-ray diffraction and transmission electron microscopy (TEM).

나프타 분해공정 부산물인 PFO로부터 탄소구조체 합성 (Synthesis of Carbon Materials from PFO, Byproducts of Naphtha Cracking Process)

  • 이지연;박승규
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.495-500
    • /
    • 2011
  • 나프타 분해 공정에서 필수적으로 발생되는 분해연료유(PFO, pyrolyzed fuel oil)에서 나프탈렌을 재결정해내고 남는 PFO 잔유물을 이용하여 $300{\sim}800^{\circ}C$에서 질소 조건에서 탄소구조체를 합성하여 보았다. PFO를 헥산이나 메탄올로 처리 후 얻은 탄소물질 프리커서를 열처리하면 $350^{\circ}C$에서는 수 십 ${\mu}m$ 크기의 flake 상의 탄소체가 만들어졌으나, $400^{\circ}C$ 이상에서는 수 ${\mu}m$로 크기가 줄며 공 모양의 탄소구조체로 변형되었다. BET와 XRD 스펙트럼에 따르면 공모양으로 합성된 메조상 탄소체는 큐빅상으로 미세 기공인 mesopore가 아직 잘 발달되지 많은 부정형 탄소임을 알려주고있다.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.