• Title/Summary/Keyword: Cubic Spline Interpolation

Search Result 111, Processing Time 0.024 seconds

Evaluation of Teeth and Supporting Structures on Digital Radiograms using Interpolation Methods (보간법을 이용한 디지털 방사선영상에서 치아 및 지지구조물의 ROC평가)

  • Koh Kwang-Joon;Chang Kee-Wan
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.65-85
    • /
    • 1999
  • Objectives: To determine the effect of interpolation functions when processing the digital periapical images. Material and Methods: The digital images were obtained by Digora and CDR system on the dry skull and human subject. 3 oral radiologists evaluated the 3 portions of each processed image using 7 interpolation methods, and ROC curves were obtained by trapezoidal methods. Results: The heighest Az value(0.96) was obtained with cubic spline method and the lowest Az value(0.03) was obtained with facet model method in Digora system. The heighest Az value (0.79) was obtained with gray segment expansion method and the lowest Az value(0.07) was obtained with facet model method in CDR system. There was significant difference of Az value in original image between Digora and CDR system at a=0.05 level. There were significant differences of Az values between Digora and CDR images with cubic spline method, facet model method, linear interpolation method and non-linear interpolation method at α=0.1 level.

  • PDF

Comparison Error of Signal Interpolation Methods for Vibration Signal Analysis of Revolution Machine (회전체의 진동신호분석을 위한 신호보간의 오차분석)

  • Park Jun-Yong;Park Chong-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.820-826
    • /
    • 2004
  • In this paper, studied error of various signal interpolation methods in vibration signal analysis with digital order tracking. Because, interpolation errors are related with sampling rate and amount of calculation. Appled Signal interpolation methods are Lagrange, Newton and Cubic-spline. This paper proposed more proper interpolation method. Also, we suggest guideline for adaptive application of signal interpolation methods with Calculated results.

HARDWARE DESIGN OF A SCAN CONVERTER USING SPLINE INTERPOLATION (스플라인 보간법을 적용한 스캔 변환기의 하드웨어 구현)

  • 권영민;이범근;정연모
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.71-74
    • /
    • 2000
  • The purpose of format conversion is to convert a wide range of personal computer video formats into a target format. Circuits for the conversion have been developed by means of interpolation techniques, such as zero-order interpolation, bilinear interpolation, and bisigmoidal interpolation. This paper proposes a scan converter using cubic splines. The converter was modeled in VHDL on Max+PlusII and implemented with an FPGA chip. The circuit gives much better conversion performance than a scan converter with zero-order or linear interpolation.

  • PDF

A Scan Converter Using Spline Interpolation (스플라인 보간법을 이용한 스캔 변환기)

  • 이범근;권영민;정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.11-23
    • /
    • 2000
  • The purpose of format conversion is to convert a wide range of personal computer video formats into a target format. Circuits for the conversion have been developed by means of interpolation techniques, such as zero-order interpolation, bilinear interpolation, and bisigmoidal interpolation. This paper proposes a scan converter using cubic splines. The converter was modeled in VHDL, simulated on Max+plus Ⅱ , and implemented with an FPGA chip. The circuit gives much better conversion performance than a scan converter with zero-order or linear interpolation techniques according to simulation results and implementation.

  • PDF

DESIGN OF A SCAN CONVERTER SUING SPLINE INTERPOLATION (스플라인 보간법을 이용한 스캔 변환기 설계)

  • 이범근
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.91-95
    • /
    • 2000
  • The purpose of format conversion is to convert a wide range of personal computer video formats to a target format. Circuits for the conversion has been developed by means of interpolation techniques, such as zero-order interpolation, bilinear interpolation, and bisigmoidal interpolation. This paper proposes a scan converter using cubic splines. The converter was modeled in VHDL on Max+Plus II and implemented with an FPGA cpip. The circuit gives much better conversion performance than a scan converter with zero-order or linear interpolation.

  • PDF

A study of estimation and removal of baseline drift for the automated diagnosis of electrocardiogram (심전도 자동 진단을 위한 기저선 동요 평가 및 제거에 관한 연구)

  • 권혁제;이명호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.99-106
    • /
    • 1996
  • Estimation and removal procedures for baseline drift have been developed using linear, cubic spline, and bilineared transformed high pass filter. Linear and cubic spline interpolation with the PQ and TP segmens, which are considered to be isoelectric, as fiducial points ahve been estimated respectively. For a quantitative validation of the estimation procedure, 4 ECGs with arfificial baseline drift were constructed and analyzed by mean square error calculations and amplitude histograms. Also real ECGs were analyzed in a test set of the CSE data set 3 and set 4. Baseline drift detecton rule were designed and new method for the decision of fiducial point were constructed to avoid distorting as the case of premature ventricular or atrial contraction. From these comparison, proposed cubic spline method with PQ and TP segment (CS_PQ & TP) emerged as the most efficient method.

  • PDF

Accurate Prediction of the Pricing of Bond Using Random Number Generation Scheme (난수 생성기법을 이용한 채권 가격의 정확한 예측)

  • Park, Ki-Soeb;Kim, Moon-Seong;Kim, Se-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.19-26
    • /
    • 2008
  • In this paper, we propose a dynamic prediction algorithm to predict the bond price using actual data set of treasure note (T-Note). The proposed algorithm is based on term structure model of the interest rates, which takes place in various financial modelling, such as the standard Gaussian Wiener process. To obtain cumulative distribution functions (CDFs) of actual data for the interest rate measurement used, we use the natural cubic spline (NCS) method, which is generally used as numerical methods for interpolation. Then we also use the random number generation scheme (RNGS) to calculate the pricing of bond through the obtained CDF. In empirical computer simulations, we show that the lower values of precision in the proposed prediction algorithm corresponds to sharper estimates. It is very reasonable on prediction.

  • PDF

Automatic Prostate Segmentation from Ultrasound Images using Morphological Features (형태학적 특징을 이용한 초음파 영상에서의 자동 전립선 분할)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.865-871
    • /
    • 2022
  • In this paper, we propose a method of extracting prostate region using morphological characteristics of ultra-sonic image of prostate. In the first step of the proposed method, the edge area of the prostate image is extracted. The histogram of ultra-sonic image is used to extract base objects to detect the upper edge of prostate region by altering the contrast of the image, then, the lower edges of the extracted base objects are connected by using monotone cubic spline interpolation to extract the upper edge. Step 2, Otsu's binarization is applied to the region under the extracted upper edge of the prostate ultra-sonic image to extract the lower edge of prostate. In the last step, the upper and the lower edges are connected to extract prostate region and by comparing the extracted region of prostate with the one measured manually, the result showed that the morphological characteristics of prostate in ultrasonic image can be utilized to extract the prostate region.

A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods (영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kawng-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF

Precision Calibration of Gyroscopes for Improving Dead-Reckoning Accuracy in Mobile Robots (이동로봇의 추측항법 정확성을 개선하기 위한 자이로스코프의 정확도 교정)

  • Ko Jae-Pyung;Yun Jae-Mu;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2005
  • This paper describes a method aimed at improving dead-reckoning accuracy with gyroscopes in mobile robots. The method is a precision calibration procedure for gyroscopes, which effectively reduces the ill effects of nonlinearity of the scale-factor and temperature dependency. This paper also describes the methods of gyro data collection fur all ambient temperature$(-40^{\circ}C{\~}+80^{\circ}C)$ using cubic spline interpolation and defining the error function. The sensor used was a vibrating gyroscope called the EWTS82NA21, which is low lost and commonly used in car navigation system, made by Panasonic. This angular rate sensor utilizes Coriolis force generated by a vibrating tuning fork. The paper also provides experimental results to check the performance and the effectiveness of the proposed method.