• Title/Summary/Keyword: Cubic Si

Search Result 179, Processing Time 0.105 seconds

Two Anhydrous Zeolite X Crystal Structures, $Ca_{31}Rb_{30}Si_{100}Al_{92}O_{384}$ and $Ca_{28}Rb_{36}Si_{100}Al_{92}O_{384}$

  • 장세복;김미숙;한영욱;김양
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.631-637
    • /
    • 1996
  • The structures of fully dehydrated Ca2+- and Rb+-exchanged zeolite X, Ca31Rb30Si100Al92O384(Ca31Rb30-X; a=25.009(1) Å) and Ca28Rb36Si100Al92O384(Ca28Rb36-X; a=24.977(1) Å), have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd&bar{3} at 21(1) ℃. Their structures were refined to the final error indices R1=0.048 and R2=0.041 with 236 reflections for Ca31Rb30-X, and R1=0.052 and R2=0.043 with 313 reflections for Ca28Rb36-X; I>3σ(I). In both structures, Ca2+ and Rb+ ions are located at six different crystallographic sites. In dehydrated Ca31Rb30-X, sixteen Ca2+ ions fill site I, at the centers of the double 6-rings (Ca-O=2.43(1) Å and O-Ca-O=93.3(3)°). Another fifteen Ca2+ ions occupy site II (Ca-O=2.29(1) Å, O-Ca-O=119.5(5)°) and fifteen Rb+ ions occupy site II opposite single six-rings in the supercage; each is 1.60 Å from the plane of three oxygens (Rb-O=2.77(1) Å and O-Rb-O=91.1(4)°). About two Rb+ ions are found at site II', 1.99 Å into sodalite cavity from their three-oxygen plane (Rb-O=2.99(1) Å and O-Rb-O=82.8(4)°). The remaining thirteen Rb+ ions are statistically distributed over site III, a 48-fold equipoint in the supercages on twofold axes (Rb-O=3.05(1) Å and Rb-O=3.38(1) Å). In dehydrated Ca28Rb36-X, sixteen Ca2+ ions fill site I (Ca-O=2.41(1) Å and O-Ca-O=93.6(3)°) and twelve Ca2+ ions occupy site II (Ca-O=2.31(1) Å, O-Ca-O=119.7(4)°). Sixteen Rb+ ions occupy site II; each is 1.60 Å from the plane of three oxygens (Rb-O=2.81(1) Å and O-Rb-O=90.6(3)°) and four Rb+ ions occupy site II'; each is 1.88 Å into sodalite cavity from their three-oxygen plane (Rb-O=2.99(1) Å and O-Rb-O=83.8(2)°). The remaining sixteen Rb+ ions are found at III site in the supercage (Rb-O=2.97(1) Å and Rb-O=3.39(1) Å). It appears that Ca2+ ions prefer sites I and II in that order, and that Rb+ ions occupy the remaining sites. Rb+ ions are too large to be stable at site I, when they are competing with other smaller cations like Ca2+ ions.

Determination of Si/Al Ratio of Faujasite-type Zeolite by Single-crystal X-ray Diffraction Technique. Single-crystal Structures of Fully Tl+- and Partially K+-exchanged Zeolites Y (FAU), |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU

  • Seo, Sung-Man;Lee, Oh-Seuk;Kim, Hu-Sik;Bae, Dong-Han;Chun, Ik-Jo;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1675-1682
    • /
    • 2007
  • Large colorless single crystals of faujasite-type zeolite with diameters up to 200 μm have been synthesized from gels with the composition of 3.58SiO2:2.08NaAlO2:7.59NaOH:455H2O:5.06TEA:1.23TCl. Two of these, colorless octahedron about 200 μm in cross-section have been treated with aqueous 0.1 M TlC2H3O2 and KNO3 in order to prepare Tl+- and K+-exchanged faujasite-type zeolites, respectively, and then determined the Si/Al ratio of the zeolite framework. The crystal structures of |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU per unit cell, a = 24.9463(2) and 24.9211(16) A, respectively, dehydrated at 673 K and 1 × 10-6 Torr, have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd m at 294 K. The two single-crystal structures were refined using all intensities to the final error indices (using only the 905 and 429 reflections for which Fo > 4σ(Fo)) R1/R2 = 0.059/0.153 and 0.066/0.290, respectively. In the structure of fully Tl+-exchanged faujasite-type zeolite, 71 Tl+ ions per unit cell are located at four different crystallographic sites. Twenty-nine Tl+ ions fill site I' in the sodalite cavities on 3-fold axes opposite double 6-rings (Tl-O = 2.631(12) A and O-Tl-O = 93.8(4)o). Another 31 Tl+ ions fill site II opposite single 6-rings in the supercage (Tl-O = 2.782(12) A and O-Tl-O = 87.9(4)o). About 3 Tl+ ions are found at site III in the supercage (Tl-O = 2.91(6) and 3.44(3) A), and the remaining 8 occupy another site III (Tl-O = 2.49(5) and 3.06(3) A). In the structure of partially K+-exchanged faujasite-type zeolite, 53 K+ ions per unit cell are found at five different crystallographic sites and 18 Na+ ions per unit cell are found at two different crystallographic sites. The 4 K+ ions are located at site I, the center of the hexagonal prism (K-O = 2.796(8) A and O-K-O = 89.0(3)o). The 10 K+ ions are found at site I' in the sodalite cavity (K-O = 2.570(19) A and O-KO = 99.4(9)o). Twenty-two K+ ions are found at site II in the supercage (K-O = 2.711(9) A and O-K-O = 94.7(3)o). The 5 K+ ions are found at site III deep in the supercage (K-O = 2.90(5) and 3.36(3) A), and 12 K+ ions are found at another site III' (K-O = 2.55(3) and 2.968(18) A). Twelve Na+ ions also lie at site I' (Na-O = 2.292(10) and O-Na-O = 117.5(5)o). The 6 Na+ ions are found at site II in the supercage (Na-O = 2.390(17) A and O-Na-O = 113.1(11)o). The Si/Al ratio of synthetic faujasite-type zeolite is 1.70 determined by the occupations of cations, 71, in two single-crystal structures.

Crystal Structures of Zeolite X Exchanged by Two Different Cations. Structures of Cd32Cs28-X and Cd28Rb36-X (X=Si100Al92O384)

  • Jeong, Gyoung-Hwa;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1121-1126
    • /
    • 2002
  • Two anhydrous crystal structures of fully dehydrated Cd2+ - and Cs+ -exchanged zeolite X, Cd32Cs28Si100Al92O384 (Cd32Cs28-X: a = 24.828(11) $\AA)$ and fully dehydrated Cd,sup>2+ - and Rb+ -exchanged zeolite X, Cd28Rb36Si100Al92O384 (Cd28Rb36-X: a = 24.794(2) $\AA$), have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C.$ The structures were refined to the final error indices, R1 = 0.058 and R2 = 0.065 with 637 reflections for Cd32Cs28-X and R1 = 0.086 and R2 = 0.113 with 521 reflections for Cd28Rb36-X for which I > $3\sigma(I)$. In the structure of Cd,sub>32Cs28-X, 16 Cd2+ ions fill the octahedral sites I at the centers of the double six rings (Cd-O = $2.358(8)\AA$ and O-Cd-O = $90.8(3)^{\circ}$ ). The remaining 16 Cd2+ ions occupy site II (Cd-O = $2.194(8)\AA$ and O-Cd-O = $119.7(4)^{\circ})$ and six Cs+ ions occupy site II opposite to the single six-rings in the supercage; each is $2.322\AA$ from the plane of three oxygens (Cs-O = 3.193(13) and O-Cs-O = $73.0(2)^{\circ}).$ Aboutten Cs+ ions are found at site II', $1.974\AA$ into the sodalite cavity from their three oxygen plane (Cs-O = $2.947(8)\AA$ and O-Cs-O = $80.2(3)^{\circ}).$ The remaining 12 Cs+ ions are distributed over site III' (Cs-O = 3.143(9) and O-Cs-O= $59.1(2)^{\circ})$. In the structure of Cd28Rb36-X, 16 Cd2+ ions fill the octahedral sites I at the center of the double-sixrings (Cd-O = 2.349(15) and O-Cd-O = $91.3(5)^{\circ}$ ). Another 12 Cd2+ ions occupy two different II sites (Cd-O = $2.171(18)/2.269(17)\AA$ and O-Cd-O = $119.7(7)/113.2(7)^{\circ}).$ Fifteen Rb+ ions occupy site II (Rb-O = $2.707(17)\AA$ and O-Rb-O = $87.8(5)^{\circ}).$ The remaining 21 Rb+ ions are distributed over site III' (Rb-O = $3.001(16)\AA$ and O-Rb-O = $60.7(4)^{\circ})$. It appears that the smaller and more highly charged Cd2+ ions prefer sites I and Ⅱ in that order, and the larger Rb+ and Cs+ ions, which are less able to balance the anionic charge of the zeolite framework, occupy sites II and II' with the remainder going to the least suitable site in the structure, site III'.The maximum Cs+ and Rb+ ion exchanges were 30% and 39%, respectively. Because these cations are too largeto enter the small cavities and their charge distributions may be unfavorable, cation-sieve effects might appear.

Single-crystal Structure of Fully Dehydrated and Largely NH4+-exchanged Zeolite Y (FAU, Si/Al = 1.70), │(NH4)60Na11│[Si121Al71O384]-FAU

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Kim, Young-Hun;Wang, Lian-Zhou;Lu, Gao-Qing;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.543-550
    • /
    • 2009
  • The single-crystal structure of largely ammonium-exchanged zeolite Y dehydrated at room temperature (293 K) and 1 ${\times}\;10^{-6}$ Torr. has been determined using synchrotron X-radiation in the cubic space group $Fd\overline{3}m\;(a=24.9639(2)\AA)$ at 294 K. The structure was refined to the final error index $R_1$ = 0.0429 with 926 reflections where $F_o>4\sigma(F_o)$; the composition (best integers) was identified as |$(NH_4)_{60}Na_{11}$|[$Si_{121}Al_{71}O_{384}$]-FAU. The 11 $Na^{+}$ ions per unit cell were found at three different crystallographic sites and 60 ${NH_4}^{+}$ ions were distributed over three sites. The 3 $Na^{+}$ ions were located at site I, the center of the hexagonal prism ($Na-O\;=\;2.842(5)\;\AA\;and\;O-Na-O\;=\;85.98(12)^{\circ}$). The 4 $Na^{+}$ and 22 ${NH_4}^{+}$ ions were found at site I' in the sodalite cavity opposite the double 6-rings, respectively ($Na-O\;=\;2.53(13)\;\AA,\;O-Na-O\;=\;99.9(7)^{\circ},\;N-O\;=\;2.762(11)\;\AA,\;and\;O-N-O =\;89.1(5)^{\circ}$). About 4 $Na^{+}$ ions occupied site II ($(Na-O\;=\;2.40(4)\;\AA\;and\;O-Na-O\;=\;108.9(3)^{\circ}$) and 29 ${NH_4}^{+}$ ions occupy site II ($N-O\;=\;2.824(9)\;\AA\;and\;O-N-O\;=\;87.3(3)^{\circ}$) opposite to the single 6-rings in the supercage. The remaining 9 ${NH_4}^{+}$ ions were distributed over site III' ($N-O\;=\;2.55(3),\;2.725(13)\;\AA\;and\;O-N-O\;=\;94.1(13),\;62.16(15),\;155.7(14)^{\circ}$).

Crystal Structures of Ni2$^{2+}$ - and Tl$^+$ - Exchanged Zeolite X, $Ni_{17}Tl_{58}Si_{100}Al_{92}O_{384} and Ni_{12}Tl_{68}Si_{100}Al_{92}O_{384}$

  • Song, Mi Gyeong;Yun, Bo Yeong;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • The crystal structures of fully dehydrated Ni2+- and Tl+ -exchanged zeolite X (Ni17Tl58-X, and Ni12Tl68-X; X=Si100Al92O384) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at $21(1)^{\circ}C$ (a=24.380(4) $\AA$, 24.660(4) $\AA$, respectively). Their structures have been refined to the final error indices R1=0.037 and R2=0.043 with 485 reflections, and R1=0.039 and R2=0.040 with 306 reflections, respectively, for which I >36(I). In Ni17Tl58-X, 17 Ni2+ ions per unit cell were found at only two sites: 15 at site I at the center of the hexagonal prism (Ni-O=2.203(9) $\AA)$ and the remaining 2 at site II near single six-oxygen rings in the supercage (Ni-O=2.16(3) $\AA).$ Fifty-eight Tl+ ions were found at five crystallographic sites: 28 at site II (Tl-O=2.626(8) $\AA)$, 2 at site I' in the sodalite cavity near the hexagonal prism (Tl-O=2.85(1) $\AA)$, another 2 at site II' in the sodalite cavity (Tl-O=2.77(1) $\AA).$ The remaining 26 were found at two nonequivalent Ⅲ' sites with occupancies of 23 and 3. In Ni12Tl68-X, 12 Ni2+ ions per unit cell were found at two sites: 10 at site I (Ni-O=2.37(2) $\AA)$ and the remaining 2 at site II (Ni-O=2.13(2) $\AA).$ Sixty-eight Tl+ ions were found at five crystallographic sites: 28 at site II (Tl-O=2.63(1) $\AA)$, 12 at site I' (Tl-O=2.62(1) $\AA)$, 2 at site II' (Tl-O=3.01(2) $\AA)$, and the remaining 26 at two III' sites with occupancies of 23 and 3. It appears that Ni 2+ ions prefer to occupy site I and II, in that order. The large Tl+ ions occupy the remaining sites, I', II, II' and two different III' sites. In both crystals, only the Ni2+ ions at site II were reduced and migrated to the external surface of zeolite X when these crystals were treated with hydrogen gas.

Synthesis of Fully Dehydrated Partially Cs+-exchanged Zeolite Y (FAU, Si/Al = 1.56), |Cs45Na30|[Si117Al75O384]-FAU and Its Single-crystal Structure

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Lee, Seok-Hee;Bae, Jun-Seok;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1285-1292
    • /
    • 2009
  • Large single crystals of zeolite, |$Na_{75}$|[$Si_{117}Al_{75}O_{384}$]-FAU (Na-Y, Si/Al = 1.56), were synthesized from gels with composition of 3.58Si$O_2$ : 2.08NaAl$O_2$ : 7.59NaOH : 455$H_2$O : 5.06TEA : 2.23TCl. One of these, a colorless single-crystal was ion exchanged by allowing aqueous 0.02 M CsOH to flow past the crystal at 293 K for 3 days, followed by dehydration at 673 K and 1 ${\times}\;10^{-6}$ Torr for 2 days. The crystal structure of fully dehydrated partially $Cs^+$-exchanged zeolite Y, |$Cs_{45}Na_{30}$|[$Si_{117}Al_{75}O_{384}$]-FAU per unit cell (a = 24.9080(10) $\AA$) was determined by single-crystal X-ray diffraction technique in the cubic space group Fd $\overline{3}$ m at 294(1) K. The structure was refined using all intensities to the final error indices (using only the 877 reflections with $F_o\;>\;4{\sigma}(F_o))\;R_1$ = 0.0966 (Based on F) and $R_2\;=\;0.2641\;(Based\;on\;F^2$). About forty-five $Cs^+$ ions per unit cell are found at six different crystallographic sites. The 2 $Cs^+$ ions occupied at site I, at the centers of double 6-ring (D6Rs, Cs-O = 2.774(10) $\AA$ and O-Cs-O = 88.9(3) and 91.1(3)$^o$). Two $Cs^+$ ions are found at site I’ in the sodalite cavity; the $Cs^+$ ions were recessed 2.05 $\AA$ into the sodalite cavity from their 3-oxygen plane (Cs-O = 3.05(3) $\AA$ and O-Cs-O = 77.4(13)$^o$). Site-II’ positions (opposite single 6-rings in the sodalite cage) are occupied by 7 $Cs^+$ ions, each of which extends 2.04 $\AA$ into the sodalite cage from its 3-oxygen plane (Cs-O = 3.067(11) $\AA$ and O-Cs-O = 80.1(3)$^o$). The 26 $Cs^+$ ions are nearly three-quarters filled at site II in the supercage, being recessed 2.34 $\AA$ into the supercage (Cs-O = 3.273(8) $\AA$ and O-Cs-O = 74.3(3)$^o$). The 4 $Cs^+$ ions are found at site III deep in the supercage (Cs-O = 3.321(19) and 3.08(3) $\AA$), and 4 $Cs^+$ ions at another site III’ (Cs-O = 2.87(4) and 3.38(4) $\AA$). About 30 $Na^+$ ions per unit cell are found at one crystallographic site; The $Na^+$ ions are located at site I’ in the sodalite cavity opposite double 6-rings (Na-O = 2.578(11) $\AA$ and O-Na-O = 97.8(4)$^o$).

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

Crystal field splitting energy for $CdGa_2Se_4$ epilayers obtained by photocurrent measurement (광전류 측정으로부터 얻어진 $CdGa_2Se_4$ 에피레이어의 결정장 갈라짐에 대한 에너지)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.144-145
    • /
    • 2009
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the poly crystal source of $CdGa_2Se_4$ at $630\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27\;\times\;10^{17}\;cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - ($7.721\;{\times}\;10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasi cubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_{11}$-exciton peaks.

  • PDF

Crystal Structure of Nitrogen Adsorption of $Cd^{2+}$ ion Exchanged Zeolite-X (카드늄으로 이온교환된 제올라이트 X의 질소 흡착 결정구조)

  • Lee, Seok-Hee;Jeong, Gyoung-Hwa;Kim, Nam-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.204-211
    • /
    • 2005
  • The structure of nitrogen adsorption complex of fully dehydrated $Cd^{2+}$ ion exchanged zeolite-X, $|Cd_{46}(N)_{18}|[Si_{100}Al_{92}O_{384}]$, was determined in the cubic space group $Fd\overline{3}$ at 21(1) $^{\circ}C$ [a = 24.863(4) ] by single crystal X-ray diffraction analysis. The crystal was prepared by ion exchange in a flowing steam of 0.05 M aqueous solution $Cd(NO_3)_2$ : $Cd(O_2CCH_3)_2$ = 1:1 for five days, followed by dehydration at $500^{\circ}C$ and $2{\times}10^{-6}$ Tor. for two days, and exposured to 100 Tor. zeolitically dry nitrogen gas at 21(1) $^{\circ}C$. The structure was determined in atmosphere, and was refined within $F_0$ > $4{\sigma}(F_0)$ using reflection for which the final error can appear in indices $R_1$ = 0.097 and $wR_2$ = 0.150. In this structure, $Cd^{2+}$ ions occupied four crystallographic sites. Nine $Cd^{2+}$ ions filled the octahedral site I at the centers of hexagonal prisms (Cd-O = 2.452(16) ${\AA}$). Eight $Cd^{2+}$ ions filled site I' (Cd-O = 2.324(19) ${\AA}$). The remaining 29 $Cd^{2+}$ ions are found at two nonequivalent sites II (in the supercages) with occupancy of 11 and 18 ions. Each of these $Cd^{2+}$ ions coordinated to three framework oxygens, either at 2.159(15) or 2.147(14) ${\AA}$, respectively. Eighteen nitrogen molecules were adsorbed per unit cell and three per supercage.

BN 코팅층의 광학 특성에 관한 연구

  • 김경태;이성훈;이건환
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.12-12
    • /
    • 2002
  • hexagonal Boron Nitride (hBN), rhombohedral Boron Nitride (rBN)과 고밀도의 wurzitic Boron N Nitride (wBN), cubic Boron Nitride (cBN) 등의 다양한 상을 갖는 Boron nitride는 그 결정구조에 따라 저밀도, 고밀도 박막으로 분류되며 이중 hBN과 rBN은 층간 결합이 약한 $sp^2$ 결합특성을 가지고, wBN 과 cBN은 강한 $sp^3$ 결합특성을 가지고 있다. 현재까지 $sp^3$결합을 갖는 BN의 우수한 특성을 응용하기 위한 수 많은 연구들이 있어왔다. 특히 cBN은 다이아몬드에 버금가는 높은 경도뿐만 아니라 높은 화 학적 안정성 및 열전도성 등 우수한 물리화학적 특성을 가지고 있어 마찰.마모, 전자, 광학 등의 여러 분야에서의 산업적 응용이 크게 기대되고 있다. 그러나 이와 같이 BN박막의 기계적 물성과 관련한 연 구는 많이 진행되어 왔으나 전기.전자적, 광학적 특성에 관한 연구는 미비한 실정이다. 따라서 본 연구에서는 BN박막의 또 다른 웅용 분야를 탐색하고자 ME - ARE (Magnetically Enhanced A Activated Reactive Evaporation)법 에 의 해 합성 된 BN박막의 광학적 특성 에 관하여 조사하였다. BN박 막합성 은 전자총에 의 해 증발된 보론과 질소.아르곤 플라즈마의 활성 화반응증착(Activated Reactive E Evaporation)에 의해 이루어졌다. 기존의 ARE장치와 달리 열음극(hot cathode)과 양극(anode)사이에 평 행자기장을 부가하여 플라즈마의 증대시켜 반웅효율을 높였다. 합성실험용 모재로는 기본적인 특성 분 석을 위해 p-type으로 도핑된 (100) Si웨이퍼를 $30{\times}40mm$크기로 절단 후, 10%로 희석된 완충불산용액 에 10분간 침적하여 표면의 산화층을 제거한 후 사용하였으며, 광학특성 분석을 위해 $30{\times}30mm$의 glass를 아세톤으로 탈지.세척한 후 사용하였다. 박막합성실험에서 BN의 광학적 특성에 미치는 공정변수의 영향을 파악하기 위하여, 기판바이어스 전압, discharge 전류, $Ar/N_2$가스 유량비 등을 달리하여 증착하였다. 증착된 박막은 FTIR 분석을 통하 여 결정성을 확인하였으며, AFM 분석을 통하여 코팅층의 두께를 측정하였고, UV - VIS spectormeter를 이용하여 투광특성을 평가하였다.

  • PDF